• Title/Summary/Keyword: Multi-Function Waveform

Search Result 17, Processing Time 0.02 seconds

The Development of the Multi-function Radar Signal Processor Having the High Spurious Free Dynamic Range (불요신호 특성이 우수한 다기능레이더 신호처리기 개발)

  • Lee, Hee-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.140-146
    • /
    • 2010
  • The multi-function radar can detect and track the low RCS targets. For this purpose the multi-function radar uses the pulse train waveform. because this waveform has high dynamic range and good SNR(Signal to Noise Ratio). But the spurious signals can also be detected by processing the pulse train waveform. Thus the multi-function radar signal processor must have the high SFDR(Spurious Free Dynamic Range). This paper describes the development of the multi-function radar signal processor having the high SFDR.

Maximum Likelihood Based Doppler Estimation and Target Detection with Pulse Code Modulated Waveform (ML 기법을 이용한 PCM 파형에서의 표적 탐지 및 도플러 추정)

  • Yang, Eunjung;Lee, Heeyoung;Song, Junho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1275-1283
    • /
    • 2014
  • Characteristics of PCM(Pulse Code Modulation) waveform are suitable for target tracking. Especially in terms of dwell time, it is desirable to detect and track a moving target with the single PCM waveform for a MFR(Multi-Function Radar) which carries out multiple tasks. General PCM waveform processing includes Doppler filter bank caused by the characteristics of ambiguity function, to detect target and estimate Doppler frequency, which induces hardware burden and computational complexity. We propose a ML(Maximum Likelihood) based Doppler estimator for a PCM waveform, which is the closed form suboptimal solution and computationally efficient to estimate Doppler frequency and detect a moving target.

Multi-Function Compact Frequency Synthesizer for Ka Band Seeker (Ka 대역 탐색기용 다기능 초소형 주파수 합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.926-934
    • /
    • 2016
  • In this paper, we designed a compact frequency synthesizer with multi-function for Ka-band seeker. DDS(Direct Digital Synthesizer) is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and frequency up-converter are integrated in one module. Proposed frequency synthesizer provides precise detection and tracking waveform for low and high speed targets. It is observed that fabricated synthesizer performs $0.45{\mu}sec$ frequency switching time and -93.69 dBc/Hz phase noise at offset 1 kHz. The size of the synthesizer is kept within 120 mm width, 120 mm length and 22 mm height.

A Study on Radar Waveform - Polyphase Sequence (레이더 파형 연구 - 다위상 시퀀스)

  • Yang, Jin-Mo;Kim, Whan-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.673-682
    • /
    • 2010
  • This paper describes and analyzes a various generation methods of the mutually orthogonal polyphase sequences with low cross-correlation peak sidelobe and low autocorrelation peak sidelobe levels. The mutual orthogonality is the key requirement of multi-static or MIMO(Multi-Input Multi-Output) radar systems which provides the good target detection and tracking performance. The polyphase sequences, which are generated by SA(Simulated Annealing) and GA(Genetic Algorithm), have been analyzed with ACF(Autocorrelation Function) PSL(Peak Sidelobe Level) and CCF(Crosscorrelation Function) level at the matched filter output. Also, the ambiguity function has been introduced and simulated for comparing Doppler properties of each sequence. We have suggested the phase selection rule for applying multi-static or MIMO systems.

Application of Displacement-Vector Objective Function for Frequency-domain Elastic Full Waveform Inversion (주파수 영역 탄성파 완전파형역산을 위한 변위벡터 목적함수의 적용)

  • Kwak, Sang-Min;Pyun, Suk-Joon;Min, Dong-Joo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.220-226
    • /
    • 2011
  • In the elastic wave equations, both horizontal and vertical displacements are defined. Since we can measure both the horizontal and vertical displacements in field acquisition, these displacements compose a displacement vector. In this study, we propose a frequency-domain elastic waveform inversion technique taking advantage of the magnitudes of displacement vectors to define objective function. When we apply this displacement-vector objective function to the frequency-domain waveform inversion, the inversion process naturally incorporates the back-propagation algorithm. Through the inversion examples with the Marmousi model and the SEG/EAGE salt model, we could note that the RMS error of the solution obtained by our algorithm decreased more stably than that of the conventional method. Particularly, the density of the Marmousi model and the low-velocity sub-salt zone of the SEG/EAGE salt model were successfully recovered. Since the gradient direction obtained from the proposed objective function is numerically unstable, we need additional study to stabilize the gradient direction. In order to perform the waveform inversion using the displacementvector objective function, it is necessary to acquire multi-component data. Hence, more rigorous study should be continued for the multi-component land acquisition or OBC (Ocean Bottom Cable) multi-component survey.

The Waveform Model of Laser Altimeter System with Flattened Gaussian Laser

  • Ma, Yue;Wang, Mingwei;Yang, Fanlin;Li, Song
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.363-370
    • /
    • 2015
  • The current waveform model of a laser altimeter is based on a Gaussian laser beam of fundamental mode, while the flattened Gaussian beam has many advantages such as nearly constant energy distribution on the center of the cross-section. Following the theory of the flattened Gaussian beam and the waveform theory of the laser altimeter, some of the primary parameters of the received waveform were derived, and a laser altimetry waveform simulator and waveform processing software were programmed and improved under the circumstance of a flattened Gaussian beam. The result showed that the bias between theoretical and simulated waveforms was less than 3% for every order mode, the waveform width and range error would increase as target slope or order number rose. Under higher order mode, the shapes of the received waveforms were no longer Gaussian, and could be fitted more precisely as a generalized Gaussian function with power bigger than 2. The flattened beam got much better performance for a multi-surface target, especially when the small surface is far from the center of the laser footprint. This article provides the waveform theoretical basis for the use of a flattened Gaussian beam in a laser altimeter.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Target Classification for Multi-Function Radar Using Kinematics Features (운동학적 특징을 이용한 다기능 레이다 표적 분류)

  • Song, Junho;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.404-413
    • /
    • 2015
  • The target classification for ballistic target(BT) is one of the most critical issues of ballistic defence mode(BDM) in multi-function radar(MFR). Radar responds to the target according to the result of classifying BT and air breathing target(ABT) on BDM. Since the efficiency and accuracy of the classification is closely related to the capacity of the response to the ballistic missile offense, effective and accurate classification scheme is necessary. Generally, JEM(Jet Engine Modulation), HRR(High Range Resolution) and ISAR(Inverse Synthetic Array Radar) image are used for a target classification, which require specific radar waveform, data base and algorithms. In this paper, the classification method that is applicable to a MFR system in a real environment without specific waveform is proposed. The proposed classifier adopts kinematic data as a feature vector to save radar resources at the radar time and hardware point of view and is implemented by fuzzy logic of which simple implementation makes it possible to apply to the real environment. The performance of the proposed method is verified through measured data of the aircraft and simulated data of the ballistic missile.

A Helicopter-borne Pulse Doppler Radar Signal Processor Development using High Speed Multi-DSP (고속 Multi-DSP를 이용한 헬기탑재 펄스 도플러 레이다 신호처리기 개발)

  • Kwag, Young-Kil;Choi, Min-Su;Jeun, In-Pyung;Hwang, Gwang-Yeon;Lee, Kang-Hoon;Lee, Jae-Ho
    • Proceedings of the Korea Electromagnetic Engineering Society Conference
    • /
    • 2005.11a
    • /
    • pp.23-28
    • /
    • 2005
  • An airborne radar is an essential aviation electronic system of the helicopter to perform various missions in all-weather environments. This paper presents the results of the design and implementation of the airborne pulse doppler radar signal processor using high multi-DSP for the multi-function radar capability such as short-range, midium-range, and long-range depending on the mission of the vehicle. Particularly, the radar signal processor is developed using two DSP boards in parallel for the various radar signal processing algorithm. The key algorithms include LFM chirp waveform-based pulse compression, MTI clutter filter, MTD processor, adaptive CFAR, and clutter map. Especially airborne moving clutter Doppler spectrum compensation algorithm such as TACCAR is implemented for the multi-mode airborne radar system. The test results shows the good Doppler spectral separation for the clutter and the moving target in the flight test environment using helicopter.

  • PDF

A Very Low-Bit-Rate Analysis-by-Synthesis Speech Coder Using Zinc Function Excitation (Zinc 함수 여기신호를 이용한 분석-합성 구조의 초 저속 음성 부호화기)

  • Seo Sang-Won;Kim Jong-Hak;Lee Chang-Hwan;Jeong Gyu-Hyeok;Lee In-Sung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.282-290
    • /
    • 2006
  • This paper proposes a new Digital Reverberator that models Analog Helical Coil Spring Reverberator for guitar amplifiers. While the conventional digital reverberators are proposed to provide better sound field mainly based on room acoustics, no algorithm or analysis of digital reverberators those model Helical Coil Spring Reverberator was proposed. Considering the fact that approximately $70{\sim}80$ percent of guitar amplifiers are still with Helical Coil Spring Reverberator, research was performed based not on Room Acoustics but on Helical Coil Spring Reverberator itself as an effector. After performing simulations with proposed algorithm, it was confirmed that the Digital Reverberator by proposed algorithm provides perceptually equivalent response to the conventional Analog Helical Coil Spring Reverberators.