• Title/Summary/Keyword: Multi-Focus

Search Result 744, Processing Time 0.025 seconds

A 23.52µW / 0.7V Multi-stage Flip-flop Architecture Steered by a LECTOR-based Gated Clock

  • Bhattacharjee, Pritam;Majumder, Alak;Nath, Bipasha
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.3
    • /
    • pp.220-227
    • /
    • 2017
  • Technology development is leading to the invention of more sophisticated electronics appliances that require long battery life. Therefore, saving power is a major concern in current-day scenarios. A notable source of power dissipation in sequential structures of integrated circuits is due to the continuous switching of high-frequency clock signals, which do not carry any information, and hence, their switching is eliminated by a method called clock gating. In this paper, we have incorporated a recent clock-gating style named Leakage Control Transistor (LECTOR)-based clock gating to drive a multi-stage sequential architectures, and we focus on its performance under three different process corners (fast-fast, slow-slow, typical-typical) through Monte Carlo simulation at 18 GHz clock with 90 nm technology. This gating is found to be one of the best gated approaches for multi-stage architectures in terms of total power consumption.

An Efficient Event Detection Algorithm using Spatio-Temporal Correlation in Surveillance Reconnaissance Sensor Networks (감시정찰 센서네트워크에서 시공간 연관성를 이용한 효율적인 이벤트 탐지 기법)

  • Yeo, Myung-Ho;Kim, Yong-Hyun;Kim, Hun-Kyu;Lee, Noh-Bok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.913-919
    • /
    • 2011
  • In this paper, we present a new efficient event detection algorithm for sensor networks with faults. We focus on multi-attributed events, which are sets of data points that correspond to interesting or unusual patterns in the underlying phenomenon that the network monitors. Conventional algorithms cannot detect some events because they treat only their own sensor readings which can be affected easily by environmental or physical problem. Our approach exploits spatio-temporal correlation of sensor readings. Sensor nodes exchange a fault-tolerant code encoded their own readings with neighbors, organize virtual sensor readings which have spatio-temporal correlation, and determine a result for multi-attributed events from them. In the result, our proposed algorithm provides improvement of detecting multi-attributed events and reduces the number of false-negatives due to negative environmental effects.

An Interference Matrix Based Approach to Bounding Worst-Case Inter-Thread Cache Interferences and WCET for Multi-Core Processors

  • Yan, Jun;Zhang, Wei
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.2
    • /
    • pp.131-140
    • /
    • 2011
  • Different cores typically share the last-level cache in a multi-core processor. Threads running on different cores may interfere with each other. Therefore, the multi-core worst-case execution time (WCET) analyzer must be able to safely and accurately estimate the worst-case inter-thread cache interference. This is not supported by current WCET analysis techniques that manly focus on single thread analysis. This paper presents a novel approach to analyze the worst-case cache interference and bounding the WCET for threads running on multi-core processors with shared L2 instruction caches. We propose to use an interference matrix to model inter-thread interference, on which basis we can calculate the worst-case inter-thread cache interference. Our experiments indicate that the proposed approach can give a worst-case bound less than 1%, as in benchmark fib-call, and an average 16.4% overestimate for threads running on a dual-core processor with shared-L2 cache. Our approach dramatically improves the accuracy of WCET overestimatation by on average 20.0% compared to work.

Effect of Superoxide Dismutase and Low Molecular Mediators on Lignin Degradation

  • Leonowicz, Andrzej;Matuszewska, Anna;Luterek, Jolanta;Ziegenhagen, Dirk;Wojtas-Wasilewska, Maria;Hofrichter, Martin;Rogalski, Jerzy;Cho, Nam-Seok
    • Journal of the Korean Wood Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.1-14
    • /
    • 1999
  • As the biodegradation of wood constituents has been understood as a multi-basidiomycetes and enzymatic processes, this review will focus on the roles of low molecular compounds and radicals working in harmony with fungal enzymes. Wood rotting basidiomycete fungi penetrate wood, and lead to more easily metabolize carbohydrates of the wood complex. The white-rot fungi, having versatile enzymes, are able to attack directly the "lignin barrier". They also use a multi-enzyme system including so-called "feedback" type enzymes allowing for simultaneous degradation of lignin and carbohydrates. The multi-enzymes including laccase support the proposed route by explaining how the high molecular weight enzymes can function in the wood complex. These enzymes may function separately or cooperate each other. In addition, veratryl alcohol oxidase, cellobiose dehydrogenase, arylalcohol dehydrogenase, and particularly low molecular mediators and radicals have an important role in wood biodegradation. However, the possibility of other mechanism as well as other enzymes, as operating as feedback systems in the process of wood degradation, could not be excluded.

  • PDF

Small Multi-Function Oven Research and Development Via the FGI Survey (FGI조사를 통한 소형 복합오븐 개발 연구)

  • Kim, Young-Sic;Hong, Wan-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.6
    • /
    • pp.2566-2574
    • /
    • 2013
  • This study performed a focus group interview(14 people) on food-service staffs, dieticians, and housewives to develop a small multi-function oven for rice flour. The interviewees have experienced rice flour cooking and oven at home or food-service business. The interviewees have not used commercial ovens on a daily basis for several reasons, such as the absence of understanding rice flour, lack of various recipes with rice flour and inconvenience of the oven. This study suggests of design, user experience, functional characteristics, color and so on relating to a small multi-function oven to the customers.

A Study on Extraction of Useful Information from Big dataset of Multi-attributes - Focus on Single Household in Seoul - (다속성 빅데이터로부터 유용한 정보 추출에 관한 연구 - 서울시 1인 가구를 중심으로 -)

  • Choi, Jung-Min;Kim, Kun-Woo
    • Journal of the Korean housing association
    • /
    • v.25 no.4
    • /
    • pp.59-72
    • /
    • 2014
  • This study proposes a data-mining analysis method for examining variable multi-attribute big-data, which is considered to be more applicable in social science using a Correspondence Analysis of variables obtained by AIC model selection. The proposed method was applied on the Seoul Survey from 2005 to 2010 in order to extract interesting rules or patterns on characteristics of single household. The results found as follows. Firstly, this paper illustrated that the proposed method is efficiently able to apply on a big dataset of huge categorical multi attributes variables. Secondly, as a result of Seoul Survey analysis, it has been found that the more dissatisfied with residential environment the higher tendency of residential mobility in single household. Thirdly, it turned out that there are three types of single households based on the characteristics of their demographic characteristics, and it was different from recognition of home and partner of counselling by the three types of single households. Fourthly, this paper extracted eight significant variables with a spatial aggregated dataset which are highly correlated to the ratio of occupancy of single household in 25 Seoul Municipals, and to conclude, it investigated the relation between spatial distribution of single households and their demographic statistics based on the six divided groups obtained by Cluster Analysis.

A Study on the Adaptable Long Life Multi-dwelling Housing Design in Korea (융통성을 고려한 장수명 공동주택 디자인에 관한 연구)

  • Kim, Jin-Hee
    • Korean Institute of Interior Design Journal
    • /
    • v.15 no.6 s.59
    • /
    • pp.172-177
    • /
    • 2006
  • Most of the Korean multi-dwelling houses have less than 20 years of lifespan. Because the environmental issues such as energy consumption, limited resources, and demolition waste problems became been more and more critical, we now need to focus on long lasting and adaptable buildings. Korean wall bearing apartment buildings are constructed with site cast concrete for core, exterior, and interior together with pipes varied, so when the buildings are old and life style of the users changes, it is difficult to maintain and renovate these buildings. In this study, to resolve the problems described above, two types of Korean long life multi-dwelling housing models which represent improved durability and adaptability responding user's needs and life style changes were proposed with various methods as follows: Either column and beam structure or flat slab structure was used to utilize space better. To make maintenance easier and renovation economical for both public space and each unit, plumbing pipes, ducts, and conduits were clustered at the cores and public corridors with access doors and light weight partitions with steel studs and raised floors or above-ceiling spaces were used in lieu of site cast concrete walls and floor slabs with varied pipes.

A Study on Recommendation Systems based on User multi-attribute attitude models and Collaborative filtering Algorithm (다속성 태도 모델과 협업적 필터링 기반 장소 추천 연구)

  • Ahn, Byung-Ik;Jung, Ku-Imm;Choi, Hae-Lim
    • Smart Media Journal
    • /
    • v.5 no.2
    • /
    • pp.84-89
    • /
    • 2016
  • For a place-recommendation model based on user's behavior and multi-attribute attitude in this thesis. We focus groups that show similar patterns of visiting restaurants and then compare one and the other. We make use of The Fishbein Equation, Pearson's Correlation Coefficient to calculate multi-attribute attitude scores. Furthermore, We also make use of Preference Prediction Algorithm and Distance based method named "Euclidean Distance" to provide accurate results. We can demonstrate how excellent this system is through several experiments carried out with actual data.

Modeling and Analyzing Per-flow Throughput in IEEE 802.11 Multi-hop Ad Hoc Networks

  • Lei, Lei;Zhao, Xinru;Cai, Shengsuo;Song, Xiaoqin;Zhang, Ting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.10
    • /
    • pp.4825-4847
    • /
    • 2016
  • In this paper, we focus on the per-flow throughput analysis of IEEE 802.11 multi-hop ad hoc networks. The importance of an accurate saturation throughput model lies in establishing the theoretical foundation for effective protocol performance improvements. We argue that the challenge in modeling the per-flow throughput in IEEE 802.11 multi-hop ad hoc networks lies in the analysis of the freezing process and probability of collisions. We first classify collisions occurring in the whole transmission process into instantaneous collisions and persistent collisions. Then we present a four-dimensional Markov chain model based on the notion of the fixed length channel slot to model the Binary Exponential Backoff (BEB) algorithm performed by a tagged node. We further adopt a continuous time Markov model to analyze the freezing process. Through an iterative way, we derive the per-flow throughput of the network. Finally, we validate the accuracy of our model by comparing the analytical results with that obtained by simulations.

Online railway wheel defect detection under varying running-speed conditions by multi-kernel relevance vector machine

  • Wei, Yuan-Hao;Wang, You-Wu;Ni, Yi-Qing
    • Smart Structures and Systems
    • /
    • v.30 no.3
    • /
    • pp.303-315
    • /
    • 2022
  • The degradation of wheel tread may result in serious hazards in the railway operation system. Therefore, timely wheel defect diagnosis of in-service trains to avoid tragic events is of particular importance. The focus of this study is to develop a novel wheel defect detection approach based on the relevance vector machine (RVM) which enables online detection of potentially defective wheels with trackside monitoring data acquired under different running-speed conditions. With the dynamic strain responses collected by a trackside monitoring system, the cumulative Fourier amplitudes (CFA) characterizing the effect of individual wheels are extracted to formulate multiple probabilistic regression models (MPRMs) in terms of multi-kernel RVM, which accommodate both variables of vibration frequency and running speed. Compared with the general single-kernel RVM-based model, the proposed multi-kernel MPRM approach bears better local and global representation ability and generalization performance, which are prerequisite for reliable wheel defect detection by means of data acquired under different running-speed conditions. After formulating the MPRMs, we adopt a Bayesian null hypothesis indicator for wheel defect identification and quantification, and the proposed method is demonstrated by utilizing real-world monitoring data acquired by an FBG-based trackside monitoring system deployed on a high-speed trial railway. The results testify the validity of the proposed method for wheel defect detection under different running-speed conditions.