• 제목/요약/키워드: Multi-Fidelity Analysis

검색결과 30건 처리시간 0.02초

근사모델을 이용한 날개 평면형상 공력형상설계 방법 (Aerodynamic Shape Design Method for Wing Planform Using Metamodel)

  • 배효길;정소라
    • 항공우주시스템공학회지
    • /
    • 제8권4호
    • /
    • pp.18-23
    • /
    • 2014
  • In preliminary design phase, the wing geometry of the civil aircraft was determined using the empirical equation and historical data. To make wing geometry more aerodynamically efficient, an aerodynamic shape optimization was conducted. For this purpose the parametric modeling, high fidelity CFD analysis and metamodel-based optimal design technique were adopted. The parametric modeling got the design process to achieve the improvement by generating the configuration outputs easily for the major design variables. The optimal design equations were formularized as the type of the multi-objective functions considering low/high speed and lift/drag coefficient. The optimal solution was explored with the help of the kriging metamodel and the desirability function, therefore the optimal wing planform was sought to be excellent at both low and high speed region. Additionally the optimal wing planform was validated that it was excellent not only at the specific AOA, but also all over the range of AOA.

Application of TULIP/STREAM code in 2-D fast reactor core high-fidelity neutronic analysis

  • Du, Xianan;Choe, Jiwon;Choi, Sooyoung;Lee, Woonghee;Cherezov, Alexey;Lim, Jaeyong;Lee, Minjae;Lee, Deokjung
    • Nuclear Engineering and Technology
    • /
    • 제51권8호
    • /
    • pp.1871-1885
    • /
    • 2019
  • The deterministic MOC code STREAM of the Computational Reactor Physics and Experiment (CORE) laboratory of Ulsan National Institute of Science and Technology (UNIST), was initially designed for the calculation of pressurized water reactor two- and three-dimensional assemblies and cores. Since fast reactors play an important role in the generation-IV concept, it was decided that the code should be upgraded for the analysis of fast neutron spectrum reactors. This paper presents a coupled code - TULIP/STREAM, developed for the fast reactor assembly and core calculations. The TULIP code produces self-shielded multi-group cross-sections using a one-dimensional cylindrical model. The generated cross-section library is used in the STREAM code which solves eigenvalue problems for a two-dimensional assembly and a multi-assembly whole reactor core. Multiplication factors and steady-state power distributions were compared with the reference solutions obtained by the continuous energy Monte-Carlo code MCS. With the developed code, a sensitivity study of the number of energy groups, the order of anisotropic PN scattering, and the multi-group cross-section generation model was performed on the keff and power distribution. The 2D core simulation calculations show that the TULIP/STREAM code gives a keff error smaller than 200 pcm and the root mean square errors of the pin-wise power distributions within 2%.

IR-UWB를 이용한 빔 스캐닝 배열 안테나 설계 및 연구 (A Study and Design of Beam Scanning Array Antenna using IR-UWB)

  • 김근용;강은균;김진우;나극환
    • 전자공학회논문지
    • /
    • 제51권3호
    • /
    • pp.194-201
    • /
    • 2014
  • 본 논문에서는 TRM(Transmitter-Receiver Module)을 사용하여 각 안테나에 펄스의 위상을 조정함으로써 빔 패턴 각도를 조정하여 다중 경로 환경에서의 성능저하를 향상시킬 수 있다. 다중 경로 환경에서 성능저하를 향상시키는 임펄스 신호를 왜곡 없이 송 수신하는 빔 스캐닝 시스템(Beam Scanning System)을 설계 및 제작 하였다. 빔 스캐닝 시스템은 안테나 종단 부분에서 신호가 왜곡 없이 송 수신이 가능하여 하며 타 시스템에 영향을 미치지 않아야 한다. 또한 빔 조향을 통하여 표적에 대한 감지 능력도 있어야 한다. 설계한 빔 스캐닝 안테나의 분산특성은 충실도(Fidelity)를 사용하여 분석을 하고 조향과 레이더 해상도(Radar Resolution) 성능은 $1cm{\times}1cm$ 표적의 크기를 사용하여 그 성능을 확인한다. 빔 스캐닝 배열 안테나를 제작하기 위해 IR-UWB(Impulse Radio)용 비발디 안테나(Vivaldi Antenna), 삼중대역 윌킨슨 전력 분배기(Tri-Band Wilkinson power divider), TRM(Transmitter-Receiver Module), 송 수신 모듈(TRM)을 컨트롤 할 수 있는 컨트롤 보드 및 GUI 설계를 하였다. 본 연구를 통해 개발된 UWB 빔 스캐닝 시스템은 빔 패턴 각도를 조정하여 다중 경로 환경에서의 성능저하를 향상시킬 수 있으며, 네트워크 분석기를 이용한 시간영역 분석기술은 안테나 설계 시 안테나의 특성을 정확히 분석을 할 수 있고 손쉽게 빔 폭을 확인 할 수가 있다. 설계한 빔 스캐닝 시스템은 레이더 응용 분야인 지표투과 레이더, 벽 투과 레이더, 의료영상 레이더, 탐색 및 구조 레이더, 비파괴 탐상 레이더 및 무선통신 시스템에 사용 적용이 가능하다.

국가기반시설 물리적 방호체계 운영개념 및 설계방법 개선방안 연구: 원자력발전소를 중심으로 (A Study on the Concept of Operations and Improvement of the Design Methodology for the Physical Protection System of the National Infrastructure - Focused on Nuclear Power Plants -)

  • 나석종;성하얀;최선희
    • 시큐리티연구
    • /
    • 제61호
    • /
    • pp.9-38
    • /
    • 2019
  • 한국의 국가기반시설은 시설규모가 증가하고 밀집되어 강화된 북한의 국지도발, 테러공격을 위한 풍부하고 매력적인 잠재적 표적으로 식별될 것이다. 또한 드론위협, 주 52시간 근무제도에 따른 경비병력 부족 등의 보안환경 변화에 따라 현 물리적 방호체계에 대한 유효성과 적절성을 재평가하고 전환을 고려할 시점으로 사료된다. 본 연구에서는 국가기반시설 중 원자력발전소의 외곽 물리적 방호체계에 집중하여 국가 기반시설 외곽 물리적 방호체계의 전환 방향과 개선방안을 운영개념 및 설계 방법론 측면에서 연구하였다. 원자력발전소에 집중하는 이유는 원자력발전소는 피해 시 전기발전 중단의 단기적인 피해와 함께, 방사능 물질 유출과 오염에 따르는 광범위하고 장기적인 피해가 발생하므로 가장 높은 보안수준을 필요로 하기 때문이다. 개선방향 도출 목표로 국내 연구동향과 국내·해외 관련법을 종합 검토하고 한국의 특수성을 고려하여, 과학화, 기동화, 유연성으로 운영개념을 재설정하고 체계전환의 기준을 수립하였다. 새로운 외곽 물리적 방호체계의 기술적 성능개선을 위하여 개별설계에서 탈피, 고신뢰성·다방법론 기반의 통합설계 방법론 적용방안을 연구하고 구매제도 개선 및 해외 수출, 타(他)국가기반시설로의 확대적용을 제언한다.

Application of a new neutronics/thermal-hydraulics coupled code for steady state analysis of light water reactors

  • Safavi, Amir;Esteki, Mohammad Hossein;Mirvakili, Seyed Mohammad;Arani, Mehdi Khaki
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1603-1610
    • /
    • 2020
  • Due to ever-growing advancements in computers and relatively easy access to them, many efforts have been made to develop high-fidelity, high-performance, multi-physics tools, which play a crucial role in the design and operation of nuclear reactors. For this purpose in this study, the neutronic Monte Carlo and thermal-hydraulic sub-channel codes entitled MCNP and COBRA-EN, respectively, were applied for external coupling with each other. The coupled code was validated by code-to-code comparison with the internal couplings between MCNP5 and SUBCHANFLOW as well as MCNP6 and CTF. The simulation results of all code systems were in good agreement with each other. Then, as the second problem, the core of the VVER-1000 v446 reactor was simulated by the MCNP4C/COBRA-EN coupled code to measure the capability of the developed code to calculate the neutronic and thermohydraulic parameters of real and industrial cases. The simulation results of VVER-1000 core were compared with FSAR and another numerical solution of this benchmark. The obtained results showed that the ability of the MCNP4C/COBRA-EN code for estimating the neutronic and thermohydraulic parameters was very satisfactory.

Analyzing nuclear reactor simulation data and uncertainty with the group method of data handling

  • Radaideh, Majdi I.;Kozlowski, Tomasz
    • Nuclear Engineering and Technology
    • /
    • 제52권2호
    • /
    • pp.287-295
    • /
    • 2020
  • Group method of data handling (GMDH) is considered one of the earliest deep learning methods. Deep learning gained additional interest in today's applications due to its capability to handle complex and high dimensional problems. In this study, multi-layer GMDH networks are used to perform uncertainty quantification (UQ) and sensitivity analysis (SA) of nuclear reactor simulations. GMDH is utilized as a surrogate/metamodel to replace high fidelity computer models with cheap-to-evaluate surrogate models, which facilitate UQ and SA tasks (e.g. variance decomposition, uncertainty propagation, etc.). GMDH performance is validated through two UQ applications in reactor simulations: (1) low dimensional input space (two-phase flow in a reactor channel), and (2) high dimensional space (8-group homogenized cross-sections). In both applications, GMDH networks show very good performance with small mean absolute and squared errors as well as high accuracy in capturing the target variance. GMDH is utilized afterward to perform UQ tasks such as variance decomposition through Sobol indices, and GMDH-based uncertainty propagation with large number of samples. GMDH performance is also compared to other surrogates including Gaussian processes and polynomial chaos expansions. The comparison shows that GMDH has competitive performance with the other methods for the low dimensional problem, and reliable performance for the high dimensional problem.

Multi-fidelity modeling and analysis of a pressurized vessel-pipe-safety valve system based on MOC and surrogate modeling methods

  • Xueguan Song;Qingye Li;Fuwen Liu;Weihao Zhou;Chaoyong Zong
    • Nuclear Engineering and Technology
    • /
    • 제55권8호
    • /
    • pp.3088-3101
    • /
    • 2023
  • A pressurized vessel-pipe-safety valve (PVPSV) combination is a commonly used configuration in nuclear power plants, and a good numerical model is essential for the system design, sizing and performance optimization. However, owing to the large-scale and cross-scale features, it is still a challenge to build a system level numerical model with both high accuracy and efficiency. To overcome this, a novel system level modeling method which can synthesize the advantages of various models is proposed in this paper. For system modeling, the analytical approach, the method of characteristics (MOC) and the surrogate model approach are respectively adopted to predict the dynamics of the pressure vessel, the connecting pipe and the safety valve, and different models are connected through data interfaces. With this system model, dynamic simulations were carried out and both the stable and the unstable system responses were obtained. For the model verification purpose, the simulation results were compared with those obtained from experiments and full CFD simulations. A good agreement and a better efficiency were obtained, verifying the ability of the model and the feasibility of the modeling method proposed in this paper.

Flexible smart sensor framework for autonomous structural health monitoring

  • Rice, Jennifer A.;Mechitov, Kirill;Sim, Sung-Han;Nagayama, Tomonori;Jang, Shinae;Kim, Robin;Spencer, Billie F. Jr.;Agha, Gul;Fujino, Yozo
    • Smart Structures and Systems
    • /
    • 제6권5_6호
    • /
    • pp.423-438
    • /
    • 2010
  • Wireless smart sensors enable new approaches to improve structural health monitoring (SHM) practices through the use of distributed data processing. Such an approach is scalable to the large number of sensor nodes required for high-fidelity modal analysis and damage detection. While much of the technology associated with smart sensors has been available for nearly a decade, there have been limited numbers of fulls-cale implementations due to the lack of critical hardware and software elements. This research develops a flexible wireless smart sensor framework for full-scale, autonomous SHM that integrates the necessary software and hardware while addressing key implementation requirements. The Imote2 smart sensor platform is employed, providing the computation and communication resources that support demanding sensor network applications such as SHM of civil infrastructure. A multi-metric Imote2 sensor board with onboard signal processing specifically designed for SHM applications has been designed and validated. The framework software is based on a service-oriented architecture that is modular, reusable and extensible, thus allowing engineers to more readily realize the potential of smart sensor technology. Flexible network management software combines a sleep/wake cycle for enhanced power efficiency with threshold detection for triggering network wide operations such as synchronized sensing or decentralized modal analysis. The framework developed in this research has been validated on a full-scale a cable-stayed bridge in South Korea.

다단 최적 설계 프레임워크를 활용한 전기추진 항공기 프로펠러 공력 최적 설계 (Aerodynamic Design of EAV Propeller using a Multi-Level Design Optimization Framework)

  • 권형일;이슬기;최성임;김근배
    • 한국항공우주학회지
    • /
    • 제41권3호
    • /
    • pp.173-184
    • /
    • 2013
  • 본 연구에서는 프로펠러나 헬리콥터 로터와 같은 회전체의 공력 최적 설계를 위한 다단 최적 설계 프레임워크를 제안한다. 이 프레임워크는 플랜폼 설계와 단면의 형상 설계를 반복적으로 수행하는 설계 전략을 통해 회전체의 공력 성능 향상을 목표로 한다. 플랜폼 설계의 단계에서는 유전 알고리즘과 2차원 CFD 데이터베이스 기반의 깃 요소 모멘텀 이론을 이용하여 빠른 시간에 회전체의 공력 특성을 평가하여 최적점을 탐색하였다. 플랜폼 설계 후 단면에 유입되는 유동 조건을 예측하여 단면 형상 최적 설계를 수행하였다. 설계 과정에서 보다 면밀하게 유동 특성이 분석될 수 있도록 2차원 N-S 해석자와 민감도 기반의 최적화 알고리즘을 통해 최적해를 탐색하였다. 단면 형상이 설계된 후에는 최적의 유동 조건을 산출할 수 있도록 플랜폼 설계를 반복적으로 수행하였다. 본 프레임워크를 1kW급 전기추진용 항공기 프로펠러 설계에 적용하여 그 유효성을 3차원 N-S 해석과 풍동 실험을 통해 검증하였다. 설계 후, 풍동 실험 결과를 기준으로 약 5%의 프로펠러 효율 증가를 얻을 수 있었다.

변형확률모델을 활용한 소매업의 상권분석 방안에 관한 연구 (A Study on Trade Area Analysis with the Use of Modified Probability Model)

  • 진창범;윤명길
    • 유통과학연구
    • /
    • 제15권6호
    • /
    • pp.77-96
    • /
    • 2017
  • Purpose - This study aims to develop correspondence strategies to the environment change in domestic retail store types. Recently, new types of retails have emerged in retail industries. Therefore, trade area platform has developed focusing on the speed of data, no longer trade area from district border. Besides, 'trade area smart' brings about change in retail types with the development of giga internet. Thus, context shopping is changing the way of consumers' purchase pattern through data capture, technology capability, and algorithm development. For these reasons, the sales estimation model has been shown to be flawed using the notion of former scale and time, and it is necessary to construct a new model. Research design, data, and methodology - This study focuses on measuring retail change in large multi-shopping mall for the outlook for retail industry and competition for trade area with the theoretical background understanding of retail store types and overall domestic retail conditions. The competition among retail store types are strong, whereas the borders among them are fading. There is a greater need to analyze on a new model because sales expectation can be hard to get with business area competition. For comprehensive research, therefore, the research method based on the statistical analysis was excluded, and field survey and literature investigation method were used to identify problems and propose an alternative. In research material, research fidelity has improved with complementing research data related with retail specialists' as well as department stores. Results - This study analyzed trade area survival and its pattern through sales estimation and empirical studies on trade areas. The sales estimation, based on Huff model system, counts the number of households shopping absorption expectation from trade areas. Based on the results, this paper estimated sales scale, and then deducted modified probability model. Conclusions - In times of retail store chain destruction and off-line store reorganization, modified Huff model has problems in estimating sales. Transformation probability model, supplemented by the existing problems, was analyzed to be more effective in competitiveness business condition. This study offers a viable alternative to figure out related trade areas' sale estimation by reconstructing new-modified probability model. As a result, the future task is to enlarge the borders from IT infrastructure with data and evidence based business into DT infrastructure.