• 제목/요약/키워드: Multi-Energy Method

검색결과 968건 처리시간 0.031초

대규모 고등학교의 냉난방 및 신재생에너지시스템 적용방안에 관한 연구 (A Study on the Application Plan of Air-Conditioning and New and Renewable Systems in the Large High Schools)

  • 김지연;박효순;김성실;서승직
    • 설비공학논문집
    • /
    • 제21권10호
    • /
    • pp.564-574
    • /
    • 2009
  • The study is conducted to study a new, optimum and new and renewable energy application method that can cover the minimum energy and operation costs within a range of school budgets. By deriving the optimum application method, it is expected to maximize the cooling/heating and hot water supply energy saving efficiencies for educational facilities. Therefore, this research implemented a study on the new and renewable energy utilization technique diffusion expansion method and the optimum method. As a result, the first optimum plan was introduced with the multi-type geothermal heat pump 475.6 kW+highly efficient electronic cooling/heating device(EHP) 545.2 kW. On the other hand, the second optimum plan was induced as the multi-type geothermal heat pump 261kW+solar heat collector $240\;m^2$+highly efficient electronic cooling/heating device(EHP) 759.8 kW.

멀티형 에어컨의 기간에너지소비효율 평가규격에 관한 연구 (An Overview on Standards for Seasonal Performance Evaluation of Multi-type Air Conditioners)

  • 박윤철;문제명;홍주태
    • 설비공학논문집
    • /
    • 제16권1호
    • /
    • pp.91-100
    • /
    • 2004
  • Energy efficiency evaluation method for a multi-type air conditioning system still has not been developed. In this study, analysis on capacity range and evaluating method of standards for air conditioners was conducted with world-wide Standards. It is not a proper approach to use the standards for residential air conditioner to multi type air conditioners. Some difficulties and problems are commented in this study with overview of the standards. Through the analytic research, an evaluating method for multi type air conditioner was suggested with Integrated Part Load Value (IPLV). The suggested concept for evaluating energy efficiency during part load condition considers building load pattern and operating hours of the system at different locations. Load was weighted in IPLV to consider not only the concept of occurrence of outdoor temperature such as bin method but also operation hours of the system. An experiment about the IPLV was conducted with variable air volume ducted type air conditioning system and multi-type system through modified code tester to give a glance at quantitative value of the IPLV.

Study of the structural damage identification method based on multi-mode information fusion

  • Liu, Tao;Li, AiQun;Ding, YouLiang;Zhao, DaLiang
    • Structural Engineering and Mechanics
    • /
    • 제31권3호
    • /
    • pp.333-347
    • /
    • 2009
  • Due to structural complicacy, structural health monitoring for civil engineering needs more accurate and effectual methods of damage identification. This study aims to import multi-source information fusion (MSIF) into structural damage diagnosis to improve the validity of damage detection. Firstly, the essential theory and applied mathematic methods of MSIF are introduced. And then, the structural damage identification method based on multi-mode information fusion is put forward. Later, on the basis of a numerical simulation of a concrete continuous box beam bridge, it is obviously indicated that the improved modal strain energy method based on multi-mode information fusion has nicer sensitivity to structural initial damage and favorable robusticity to noise. Compared with the classical modal strain energy method, this damage identification method needs much less modal information to detect structural initial damage. When the noise intensity is less than or equal to 10%, this method can identify structural initial damage well and truly. In a word, this structural damage identification method based on multi-mode information fusion has better effects of structural damage identification and good practicability to actual structures.

Multi-unit Level 3 probabilistic safety assessment: Approaches and their application to a six-unit nuclear power plant site

  • Kim, Sung-yeop;Jung, Yong Hun;Han, Sang Hoon;Han, Seok-Jung;Lim, Ho-Gon
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1246-1254
    • /
    • 2018
  • The importance of performing Level 3 probabilistic safety assessments (PSA) along with a general interest in assessing multi-unit risk has been sharply increasing after the Fukushima Daiichi nuclear power plant (NPP) accident. However, relatively few studies on multi-unit Level 3 PSA have been performed to date, reflecting limited scenarios of multi-unit accidents with higher priority. The major difficulty to carry out a multi-unit Level 3 PSA lies in the exponentially increasing number of multi-unit accident combinations, as different source terms can be released from each NPP unit; indeed, building consequence models for the astronomical number of accident scenarios is simply impractical. In this study, a new approach has been developed that employs the look-up table method to cover every multi-unit accident scenario. Consequence results for each scenario can be found on the table, established with a practical amount of effort, and can be matched to the frequency of the scenario. Preliminary application to a six-unit NPP site was carried out, where it was found that the difference between full-coverage and cut-off cases could be considerably high and therefore influence the total risk. Additional studies should be performed to fine tune the details and overcome the limitations of the approach.

수력,양수 및 다중모델을 고려한 새로운 확률론적 발전시뮬레이션 (A New Probabilistic Generation Simulation Considering Hydro, Pumped-Storage Plants and Multi-Model)

  • 송길영;최재석
    • 대한전기학회논문지
    • /
    • 제40권6호
    • /
    • pp.551-561
    • /
    • 1991
  • The probabilistic generation simulation plays a key role in power system expansion and operational planning especially for the calculation of expected energy, loss of load probaility and unserved energy expected. However, it is crucial to develop a probabilistic generation simulation algorithm which gives sufficiently precise results within a reasonable computation time. In a previous paper, we have proposed an efficent method using Fast Hartley Transform in convolution process for considering the thermal and nuclear units. In this paper, a method considering the scheduling of pumped-storage plants and hydro plants with energy constraint is proposed. The method also adopts FHT techniques. We improve the model to include multi-state and multi-block generation. The method has been applied for a real size model system.

  • PDF

Optimal Offer Strategies for Energy Storage System Integrated Wind Power Producers in the Day-Ahead Energy and Regulation Markets

  • Son, Seungwoo;Han, Sini;Roh, Jae Hyung;Lee, Duehee
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권6호
    • /
    • pp.2236-2244
    • /
    • 2018
  • We make optimal consecutive offer curves for an energy storage system (ESS) integrated wind power producer (WPP) in the co-optimized day-ahead energy and regulation markets. We build the offer curves by solving multi-stage stochastic optimization (MSSO) problems based on the scenarios of pairs consisting of real-time price and wind power forecasts through the progressive hedging method (PHM). We also use the rolling horizon method (RHM) to build the consecutive offer curves for several hours in chronological order. We test the profitability of the offer curves by using the data sampled from the Iberian Peninsula. We show that the offer curves obtained by solving MSSO problems with the PHM and RHM have a higher profitability than offer curves obtained by solving deterministic problems.

Distributed beamforming with one-bit feedback and clustering for multi-node wireless energy transfer

  • Lee, Jonghyeok;Hwang, SeongJun;Hong, Yong-gi;Park, Jaehyun;Byun, Woo-Jin
    • ETRI Journal
    • /
    • 제43권2호
    • /
    • pp.221-231
    • /
    • 2021
  • To resolve energy depletion issues in massive Internet of Things sensor networks, we developed a set of distributed energy beamforming methods with one-bit feedback and clustering for multi-node wireless energy transfer, where multiple singleantenna distributed energy transmitters (Txs) transfer their energy to multiple nodes wirelessly. Unlike previous works focusing on distributed information beamforming using a single energy receiver (Rx) node, we developed a distributed energy beamforming method for multiple Rx nodes. Additionally, we propose two clustering methods in which each Tx node chooses a suitable Rx node. Furthermore, we propose a fast distributed beamforming method based on Tx sub-clustering. Through computer simulations, we demonstrate that the proposed distributed beamforming method makes it possible to transfer wireless energy to massive numbers of sensors effectively and rapidly with small implementation complexity. We also analyze the energy harvesting outage probability of the proposed beamforming method, which provides insights into the design of wireless energy transfer networks with distributed beamforming.

반응성 이온 건식식각에서 RF Power 변화에 따른 표면 조직화 개선 연구 (Study on Improving Surface Structure with Changing RF Power Conditions in RIE (reactive ion etching))

  • 박석기;이정인;강민구;강기환;송희은;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제29권8호
    • /
    • pp.455-460
    • /
    • 2016
  • A textured front surface is required in high efficiency silicon solar cells to reduce reflectance and to improve light trapping. Wet etching with alkaline solution is usually applied for mono crystalline silicon solar cells. However, alkali texturing method is not appropriate for multi-crystalline silicon wafers due to grain boundary of random crystallographic orientation. Accordingly, acid texturing method is generally used for multi-crystalline silicon wafers to reduce the surface reflectance. To reduce reflectivity of multi-crystalline silicon wafers, double texturing method with combination of acid and reactive ion etching is an attractive technical solution. In this paper, we have studied to optimize RIE condition by different RF power condition (100, 150, 200, 250, 300 W).

Assessment of cyclic behavior of chevron bracing frame system equipped with multi-pipe dampers

  • Behzadfar, Behnam;Maleki, Ahmad;Yaghin, Mohammad Ali Lotfollahi
    • Earthquakes and Structures
    • /
    • 제19권4호
    • /
    • pp.303-313
    • /
    • 2020
  • Spacious experimental and numerical investigation has been conducted by researchers to increase the ductility and energy dissipation of concentrically braced frames. One of the most widely used strategies for increasing ductility and energy dissiption, is the use of energy-absorbing systems. In this regard, the cyclic behavior of a chevron bracing frame system equipped with multi-pipe dampers (CBF-MPD) was investigated through finite element method. The purpose of this study was to evaluate and improve the behavior of the CBF using MPDs. Three-dimensional models of the chevron brace frame were developed via nonlinear finite element method using ABAQUS software. Finite element models included the chevron brace frame and the chevron brace frame equipped with multi-pipe dampers. The chevron brace frame model was selected as the base model for comparing and evaluating the effects of multi-tube dampers. Finite element models were then analyzed under cyclic loading and nonlinear static methods. Validation of the results of the finite element method was performed against the test results. In parametric studies, the influence of the diameter parameter to the thickness (D/t) ratio of the pipe dampers was investigated. The results indicated that the shear capacity of the pipe damper has a significant influence on determining the bracing behavior. Also, the results show that the corresponding displacement with the maximum force in the CBF-MPD compared to the CBF, increased by an average of 2.72 equal. Also, the proper choice for the dimensions of the pipe dampers increased the ductility and energy absorption of the chevron brace frame.

A Novel Method for Virtual Machine Placement Based on Euclidean Distance

  • Liu, Shukun;Jia, Weijia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권7호
    • /
    • pp.2914-2935
    • /
    • 2016
  • With the increasing popularization of cloud computing, how to reduce physical energy consumption and increase resource utilization while maintaining system performance has become a research hotspot of virtual machine deployment in cloud platform. Although some related researches have been reported to solve this problem, most of them used the traditional heuristic algorithm based on greedy algorithm and only considered effect of single-dimensional resource (CPU or Memory) on energy consumption. With considerations to multi-dimensional resource utilization, this paper analyzed impact of multi-dimensional resources on energy consumption of cloud computation. A multi-dimensional resource constraint that could maintain normal system operation was proposed. Later, a novel virtual machine deployment method (NVMDM) based on improved particle swarm optimization (IPSO) and Euclidean distance was put forward. It deals with problems like how to generate the initial particle swarm through the improved first-fit algorithm based on resource constraint (IFFABRC), how to define measure standard of credibility of individual and global optimal solutions of particles by combining with Bayesian transform, and how to define fitness function of particle swarm according to the multi-dimensional resource constraint relationship. The proposed NVMDM was proved superior to existing heuristic algorithm in developing performances of physical machines. It could improve utilization of CPU, memory, disk and bandwidth effectively and control task execution time of users within the range of resource constraint.