• 제목/요약/키워드: Multi-Coil

검색결과 186건 처리시간 0.025초

A Study on the Difference Method of Magnetic Resonance Signal Measurement when Using Multi-channel Coil and Parallel Imaging

  • Choi, Kwan-Woo;Lee, Ho-Beom;Son, Soon-Yong;Jeong, Mi-Ae
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.220-226
    • /
    • 2017
  • SNR (signal to ratio) is a criterion for providing objective information for evaluating the performance of a magnetic resonance imaging device, and is an important measurement standard for evaluating the quality of MR (Magnetic Resonance) image. The purpose of our study is to evaluate the correct SNR measurement for multi-channel coil and parallel imaging. As a result of research, we found that both T1 and T2 weighted images show the narrowest confidence interval of the method recommended by NEMA (The National Electrical manufacturers Association) 1 having a single measurement method, whereas the ACR (American College of Radiology) measurement method using a multi-channel coil and a parallel imaging technique shows the widest confidence interval. There is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a ACR measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

Coil Gun Electromagnetic Launcher (EML) System with Multi-stage Electromagnetic Coils

  • Lee, Su-Jeong;Kim, Ji-Hun;Song, Bong Sob;Kim, Jin Ho
    • Journal of Magnetics
    • /
    • 제18권4호
    • /
    • pp.481-486
    • /
    • 2013
  • An electromagnetic launcher (EML) system accelerates and launches a projectile by converting electric energy into kinetic energy. There are two types of EML systems under development: the rail gun and the coil gun. A railgun comprises a pair of parallel conducting rails, along which a sliding armature is accelerated by the electromagnetic effects of a current that flows down one rail, into the armature and then back along the other rail, but the high mechanical friction between the projectile and the rail can damage the projectile. A coil gun launches the projectile by the attractive magnetic force of the electromagnetic coil. A higher projectile muzzle velocity needs multiple stages of electromagnetic coils, which makes the coil gun EML system longer. As a result, the installation cost of a coil gun EML system is very high due to the large installation site needed for the EML. We present a coil gun EML system that has a new structure and arrangement for multiple electromagnetic coils to reduce the length of the system. A mathematical model of the proposed coil gun EML system is developed in order to calculate the magnetic field and forces, and to simulate the muzzle velocity of a projectile by driving and switching the electric current into multiple stages of electromagnetic coils. Using the proposed design, the length of the coil gun EML system is shortened by 31% compared with a conventional coil gun system while satisfying a target projectile muzzle velocity of over 100 m/s.

저온소성 다층 세라믹 기판에 로고스키코일을 내장한 전류센서에 관한 연구 (A study on the application of Rogowski coil on the LTCC)

  • 박성현;김은섭;신병철
    • 센서학회지
    • /
    • 제19권6호
    • /
    • pp.475-482
    • /
    • 2010
  • Rogowski coil which detects magnetic flux on current changes. It is used for digital integration with watt-hour meter's current sensor, because, Rogowski coil has non-cored or non-magnetic core structure, so that, it cannot be saturated magnetically. This is a study for inventing accurate electric current sensors that have been applied on multi-layer ceramic substrate. We have confirmed its properties from each different layer's materials and pattern sizes by MWS 3D Electromagnetic field analysis program. And, after sensor manufacturing on multi-layer ceramic substrate, we confirmed its sensing quality is reliable as accurate electric current sensor for watt-hour meter.

고자장 자석용 1.8T HTS insert 코일 개발 (Development of a 1.8T HTS Insert Coil for High Field Magnet)

  • 배준한;성기철
    • 전기학회논문지
    • /
    • 제56권6호
    • /
    • pp.1035-1038
    • /
    • 2007
  • We designed and manufactured a 1.8T high temperature superconducting(HTS) insert coil for a NMR magnet operated at 4.2 K. Suitable HTS superconductor and HTS coil were carefully designed and developed. We have selected multi-filamentary Bi2223 conductor fabricated by American Superconductor Corporation(AMSC). The selected conductor consists of Bi2223 filaments of 55, silver stabilizer and stainless steel reinforcement tapes. Therefore, it shows good hoop strength as well as compression tolerance. The conductor has a tape cross-section of 0.31mm x 4.8mm. the Bi2223 conductor shows large anisotropy of critical current. The critical current of conductor in magnetic field parallel to the flat surface are much higher than that in magnetic field perpendicular. The HTS coil has an inner diameter of 78 mm, an outer diameter of 127 mm and a coil length of 600 mm. In this paper, the detailed design, fabrication and test results on the HTS insert coil are presented.

전자기 용접의 충돌 속도에 대한 코일 형상의 영향 (Effect of a Coil Shape on an Impulse Velocity of the Electromagnetic Welding)

  • 박현일;이광석;이진우;이영선;김대용
    • 소성∙가공
    • /
    • 제28권3호
    • /
    • pp.135-144
    • /
    • 2019
  • Electromagnetic impulse welding (EMIW) is a type of solid state welding using the Lorentz force generated by interaction between the magnetic field of the coil and the current induced in the workpiece. Although many experimental studies have been investigated on the expansion and compression welding of tube using the EMIW process, studies on the EMIW process of lap joint between flat sheets are uncommon. Since the magnetic field enveloped inside the tube can be controlled with ease, the electromagnetic technique has been widely used for tube welding. Conversely, it is difficult to control the magnetic field in the flat sheet welding so as to obtain the required welding velocity. The current study analyzed the effects of coil shape on the impulse velocity for suitable flat one-turn coil for the EMIW of the flat sheets. The finite element (FE) multi-physics simulation involving magnetic and structural field of EMIW were conducted with the commercial software LS-DYNA to evaluate the several shape variables, viz., influence of various widths, thicknesses, gaps and standoff distances of the flat one-turn coil on the impulse velocity. To obtain maximum impulse velocity, the flat one-turn coil was designed based on the FE simulation results. The experiments were performed using an aluminum alloy 1050 sheets of 1.0mm thickness using the designed flat one-turn coil. Through the microscopic interfacial analysis of the welded specimens, the interfacial connectivity was observed to have no defects. In addition, the single lap joint tests were performed to evaluate the welding strength, and a fracture occurred in the base material. As a result, a flat one-turn coil was successfully designed to guarantee welding with bond strength equal to or greater than the base material strength.

CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(1) -다중관식 헬리컬 코일형 가스냉각기내 CO2의 열유량과 압력강하- (Experimental Study on Compact type CO2 Gas Cooler(1) - Heat Flowrate and Pressure Drop in a Multi-Tube-In-Tube Helical Coil Type Gas Cooler -)

  • 오후규;손창효
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제34권1호
    • /
    • pp.30-36
    • /
    • 2010
  • 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하에 대해서 실험적으로 조사하였다. $CO_2$와 냉각수의 유량은 각각 0.06~0.075kg/s이고, 가스냉각기의 냉각압력은 8~10 MPa이다. $CO_2$의 열유량은 냉각수 질량유량, $CO_2$의 질량유량과 냉각압력에 비례하여 증가한다. $CO_2$의 압력강하는 냉각수와 $CO_2$의 질량유량이 감소할수록 감소하지만, $CO_2$의 냉각압력이 증가할수록 감소한다. 다중관식 헬리컬 코일형 가스냉각기내 $CO_2$의 열유량과 압력강하는 각각 이중관식 가스냉각기보다 상당히 높게 또는 낮게 나타났다. 따라서 다중관식 헬리컬 코일형 가스냉각기에 $CO_2$를 적용하는 경우에는 가스냉각기의 고효율화, 고성능화, 컴팩트화가 가능할 것이다.

전송행렬 기반 등가 회로 모델을 이용한 자기공명영상 장치용 새장형 수신 코일 해석 (Analysis of the Bird-cage Receiver Coil of a MRI System Employing a Equivalent Circuit Model Based on a Transmission Matrix)

  • 김현덕
    • 한국멀티미디어학회논문지
    • /
    • 제20권7호
    • /
    • pp.1024-1029
    • /
    • 2017
  • A novel analytic solution has been derived for the bird-cage receiver coil of a magnetic resonance imaging (MRI) system, which is widely used in 3-dimensional medical imaging, by transforming the coil into an equivalent circuit model by using a transmission matrix-based circuit analysis. The bird-cage coil composed of N legs is divided into a cell for which input impedance is to be analyzed and the remaining N-1 cells, and then a transmission matrix corresponding to the N-1 cells is converted into a circuit to transform the 3-dimensional bird-cage coil into the 2-dimensional equivalent circuit model, which is suitable to derive the analytic solution for the input impedance. The proposed method derives directly the analytic solution for the input impedance at an arbitrary point of the coil unlike the conventional analytic solution of a bird-cage coil, so that it can be used not only for resonance frequency calculations but also for various coil characteristics analyses. Since the analytic solution agreed well with the results of computational simulations, it can be useful for the impedance matching of a coil and the analysis and the design of a multi-tune bird-cage coil.

다출력 유도가열 공정을 이용한 다공질 6061 알루미늄 합금의 기공 제어 공정 (A Process for the Control of Cell Size of 6061 Al foams by Multi-step Induction Heating Method)

  • 윤성원;강충길
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.449-456
    • /
    • 2003
  • Multi-step induction heating process was applied to the powder compact melting technique as a new heating process to achieve pinpoint accuracy, faster cycle time, repeatability, non-contact and energy-efficient heat in a minimal amount of time. The objective of this study is the establishment of the input data diagram of multi step induction heating process for automation of the fabrication process of 6061 Al foams with desired density. At first, proper induction coil was designed to obtain a uniform temperature distribution over the entire cross sectional area of specimen. By using this coil, foaming experiments were performed to investigate the multi-step induction heating conditions such as capacity, temperature and time conditions of each heating and holding step. On the basis of the obtained multi-step induction heating conditions, relationship between final heating temperature and fraction of porosity was investigated.

Preliminary Results of 7-Channel Insertional pTx Array Coil for 3T MRI

  • Ryu, Yeun Chul
    • Journal of Magnetics
    • /
    • 제22권2호
    • /
    • pp.238-243
    • /
    • 2017
  • In this research, we report the preliminary results of an insertional type parallel transmission (pTx) array that has 7-elements that are placed in the space above a patient table as a transmit (Tx) coil to give an RF transmission ($B_1{^+}$) field for the body object of a 3 Tesla (T) MRI system. In previous research, we have tried to compare the performances of different coil elements and array geometries for a pTx body image. Based on these results, we attempt to obtain a human image with the proposed pTx array. Through the simulation and experimental results, we introduce a possible structure of multi-channel Tx array and verify the utility of a multi-channel Tx body image using $B_1{^+}$ shimming. The insertional pTx array, combined with a receiver (Rx) array coil, provides an enhanced $B_1{^+}$ field homogeneity in a large ROI image as a result of $B_1{^+}$ shimming applied over the full body size object. Through this research, we hope to determine the usefulness of the proposed insertional type RF coil combination for 3 T body imaging.

6채널 SENSE Cardiac Array 코일을 이용한 검사 시 코일의 위치 변화에 따른 신호강도 (Signal Intensity Changes according to Coil Position Changes in MRI using 6 Channel SENSE Cardiac Array Coils)

  • 최관우;손순룡;유병규
    • 한국방사선학회논문지
    • /
    • 제12권5호
    • /
    • pp.699-706
    • /
    • 2018
  • 본 연구는 array 코일을 이용한 검사 시 코일의 위치변화에 따른 신호강도를 측정하여 영상의 신호강도가 급격히 저하되지 않는 기준 방향과 거리를 제시함으로써, 동일선상에 코일들이 위치하지 않았을 경우 신호강도가 저하되는 문제점을 개선해 보고자 하였다. 연구방법은 두 부분으로 나눠져 있는 array 코일에 multi-purpose MRI 팬텀을 위치시킨 다음 array 코일의 앞부분을 상, 하, 좌, 우 네 방향으로 중심에서 2 cm 씩 10 cm 까지 이동하며 영상을 획득한 후 신호강도를 측정하여 비교평가 하였다. 연구결과, T1, T2 강조 영상 모두 상 방향을 제외한 하 방향과 좌, 우 방향의 위치변화가 2 cm 이내인 경우 기준 신호강도인 중심의 신호강도와 유의한 차이가 없어 동일한 신호강도를 나타냄을 알 수 있었다. 결론적으로 array 코일을 이용한 검사 시 여러 가지 원인에 의해 동일선상에 코일들을 위치시킬 수 없을 경우 상 방향을 제외한 나머지 방향의 위치변화를 중심에서 2 cm 이내로 설정한다면 위치변화로 인해 신호강도가 저하되는 문제점을 개선할 수 있다.