• 제목/요약/키워드: Multi-Boundary

검색결과 830건 처리시간 0.03초

다중카메라와 레이저스캐너를 이용한 확장칼만필터 기반의 노면인식방법 (Road Recognition based Extended Kalman Filter with Multi-Camera and LRF)

  • 변재민;조용석;김성훈
    • 로봇학회논문지
    • /
    • 제6권2호
    • /
    • pp.182-188
    • /
    • 2011
  • This paper describes a method of road tracking by using a vision and laser with extracting road boundary (road lane and curb) for navigation of intelligent transport robot in structured road environments. Road boundary information plays a major role in developing such intelligent robot. For global navigation, we use a global positioning system achieved by means of a global planner and local navigation accomplished with recognizing road lane and curb which is road boundary on the road and estimating the location of lane and curb from the current robot with EKF(Extended Kalman Filter) algorithm in the road assumed that it has prior information. The complete system has been tested on the electronic vehicles which is equipped with cameras, lasers, GPS. Experimental results are presented to demonstrate the effectiveness of the combined laser and vision system by our approach for detecting the curb of road and lane boundary detection.

SHOCK WAVE BOUNDARY LAYER INTERACTION STUDIES IN CORNER FLOWS

  • Lee Hee-Joon;Vos Jan B.
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2004년도 한국우주과학회보 제13권2호
    • /
    • pp.328-331
    • /
    • 2004
  • Shock wave boundary layer interactions can make flows around a vehicle be very high pressure and temperature due to pass shock waves in small areas of the hypersonic vehicle. These phenomena can affect a critical problem in the design of hypersonic vehicles. To research the effect of shock wave boundary layer interactions, comer flows were studied in this paper using numerical studies with the NSMB (Navier-Stokes Multi Block) solver and then comparing corresponding numerical results with experimental data of the Huston High Speed Flow Field Workshop II. The mach number of flows is 12.3 in comer flows. The comparison with the computational result is presented based on diverse numerical schemes. Good agreement is obtained.

  • PDF

TWO-LAYER MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD FOR TWO-DIMENSIONAL PROBLEMS

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • 제30권3_4호
    • /
    • pp.477-488
    • /
    • 2012
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the mixed interface condition, controlled by a parameter, can optimize SAM's convergence rate. In [8], one introduced the two-layer multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. In this paper, we present a method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

접합면 스프링요소를 고려한 단말뚝-지반 상호작용계의 수직진동해석 (Vertical Vibration Analysis of Single Pile-Soil Interaction System Considering the Interface Spring)

  • 김민규;김문겸;이종세
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.106-113
    • /
    • 2002
  • In this study, a numerical analysis method for soil-pile interaction in frequency domain problem is presented. The total soil-pile interaction system is divided into two parts so called near field and far field. In the near field, beam elements are used for a pile and plain strain finite elements for soil. In the far field, dynamic fundamental solution for multi-layered half planes based on boundary element formulation is adopted for soil. These two fields are coupled using FE-BE coupling technique In order to verify the proposed soil-pile interaction analysis, the dynamic responses of pile on multi-layered half planes are simulated and the results are compared with the experimental results. Also, the dynamic response analyses of interface spring elements are performed. As a result, less spring stiffness makes the natural frequency decrease and the resonant amplitude increase.

  • PDF

Stability analysis of porous multi-phase nanocrystalline nonlocal beams based on a general higher-order couple-stress beam model

  • Ebrahimi, Farzad;Barati, Mohammad Reza
    • Structural Engineering and Mechanics
    • /
    • 제65권4호
    • /
    • pp.465-476
    • /
    • 2018
  • This article investigates buckling behavior of a multi-phase nanocrystalline nanobeam resting on Winkler-Pasternak foundation in the framework of nonlocal couple stress elasticity and a higher order refined beam model. In this model, the essential measures to describe the real material structure of nanocrystalline nanobeams and the size effects were incorporated. This non-classical nanobeam model contains couple stress effect to capture grains micro-rotations. Moreover, the nonlocal elasticity theory is employed to study the nonlocal and long-range interactions between the particles. The present model can degenerate into the classical model if the nonlocal parameter, and couple stress effects are omitted. Hamilton's principle is employed to derive the governing equations and the related boundary conditions which are solved applying an analytical approach. The buckling loads are compared with those of nonlocal couple stress-based beams. It is showed that buckling loads of a nanocrystalline nanobeam depend on the grain size, grain rotations, porosities, interface, elastic foundation, shear deformation, surface effect, nonlocality and boundary conditions.

TWO-DIMENSIONAL MUTI-PARAMETERIZED SCHWARZ ALTERNATING METHOD

  • Kim, Sang-Bae
    • Journal of applied mathematics & informatics
    • /
    • 제29권1_2호
    • /
    • pp.161-171
    • /
    • 2011
  • The convergence rate of a numerical procedure based on Schwarz Alternating Method(SAM) for solving elliptic boundary value problems depends on the selection of the interface conditions applied on the interior boundaries of the overlapping subdomains. It has been observed that the Robin condition (mixed interface condition), controlled by a parameter, can optimize SAM's convergence rate. In [7], one had formulated the multi-parameterized SAM and determined the optimal values of the multi-parameters to produce the best convergence rate for one-dimensional elliptic boundary value problems. However it was not successful for two-dimensional problem. In this paper, we present a new method which utilizes the one-dimensional result to get the optimal convergence rate for the two-dimensional problem.

Non-Gaussian approach for equivalent static wind loads from wind tunnel measurements

  • Kassir, Wafaa;Soize, Christian;Heck, Jean-Vivien;De Oliveira, Fabrice
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.589-608
    • /
    • 2017
  • A novel probabilistic approach is presented for estimating the equivalent static wind loads that produce a static response of the structure, which is "equivalent" in a probabilistic sense, to the extreme dynamic responses due to the unsteady pressure random field induced by the wind. This approach has especially been developed for complex structures (such as stadium roofs) for which the unsteady pressure field is measured in a boundary layer wind tunnel with a turbulent incident flow. The proposed method deals with the non-Gaussian nature of the unsteady pressure random field and presents a model that yields a good representation of both the quasi-static part and the dynamical part of the structural responses. The proposed approach is experimentally validated with a relatively simple application and is then applied to a stadium roof structure for which experimental measurements of unsteady pressures have been performed in boundary layer wind tunnel.

EXISTENCE RESULTS FOR POSITIVE SOLUTIONS OF NON-HOMOGENEOUS BVPS FOR SECOND ORDER DIFFERENCE EQUATIONS WITH ONE-DIMENSIONAL p-LAPLACIAN

  • Liu, Yu-Ji
    • 대한수학회지
    • /
    • 제47권1호
    • /
    • pp.135-163
    • /
    • 2010
  • Motivated by [Science in China (Ser. A Mathematics) 36 (2006), no. 7, 721?732], this article deals with the following discrete type BVP $\LARGE\left\{{{\;{\Delta}[{\phi}({\Delta}x(n))]\;+\;f(n,\;x(n\;+\;1),{\Delta}x(n),{\Delta}x(n + 1))\;=\;0,\;n\;{\in}\;[0,N],}}\\{\;{x(0)-{\sum}^m_{i=1}{\alpha}_ix(n_i) = A,}}\\{\;{x(N+2)-\;{\sum}^m_{i=1}{\beta}_ix(n_i)\;=\;B.}}\right.$ The sufficient conditions to guarantee the existence of at least three positive solutions of the above multi-point boundary value problem are established by using a new fixed point theorem obtained in [5]. An example is presented to illustrate the main result. It is the purpose of this paper to show that the approach to get positive solutions of BVPs by using multifixed-point theorems can be extended to treat nonhomogeneous BVPs. The emphasis is put on the nonlinear term f involved with the first order delta operator ${\Delta}$x(n).

다수의 주상체들의 저진폭 동위상 진동에 의한 2차 정상유동 해석 (Secondary Steady Flows Due to the Small-Amplitude In-Phase Oscillation of Multi-Cylinders)

  • 김성균
    • 대한기계학회논문집B
    • /
    • 제20권2호
    • /
    • pp.649-658
    • /
    • 1996
  • Small-amplitude harmonic oscillations of multi-cylinders are considered both experimentally and theoretically. For the theoretical model, the flow regime is separated into inner and outer regions. In the inner region, the flow is governed by the generalized Stokes boundary layer equation. In the outer region, the full Navier-Stokes equation for the steady streaming flow is solved numerically by using ADI scheme and FVM coupled with the boundary integral method. Flow visualization experiments are conducted by using the Laser Sheet Image Technique. The case of two circular cylinders and square cylinders with variable distances are chosen as a typical example. Although experimental results are based on the flow in the finite domain, both experimental and numerical results agree well qualitatively. As the separation of cylinders is increased, a numerical result shows the asymptotic convergence to a single cylinder case.

사각 물체가 존재하는 2차원 Benard 자연 대류 (Two-Dimensional Benard Natural Convection with a Rectangular Body)

  • 윤경수;하만영;윤현식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.282-289
    • /
    • 2000
  • Direct numerical solution for flow and heat transfer for Benard convection with a body is obtained using an accurate and efficient Fourier-Chebyshev collocation and multi-domain method. The flow and temperature fields are obtained fur different Rayleigh numbers and thermal boundary conditions of body. The body has adiabatic and constant temperature conditions. The existence of a body gives different flow and heat transfer fields in the system, compared to pure Benard convection. The flow and temperature fields are also affected by the thermal boundary condition of a body.

  • PDF