• Title/Summary/Keyword: Multi-Axis

Search Result 563, Processing Time 0.025 seconds

A Hydrodynamical Simulation of the Off-Axis Cluster Merger Abell 115

  • Lee, Wonki;Kim, Mincheol;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2018
  • A merging galaxy cluster is a useful laboratory to study many interesting astrophysical processes such as intracluster medium heating, particle acceleration, and possibly dark matter self-interaction. However, without understanding the merger scenario of the system, interpretation of the observational data is severely limited. In this work, we focus on the off-axis binary cluster merger Abell 115, which possesses many remarkable features. The cluster has two cool cores in X-ray with disturbed morphologies and a single giant radio relic just north of the northern X-ray peak. In addition, there is a large discrepancy (almost a factor of 10) in mass estimate between weak lensing and dynamical analyses. To constrain the merger scenario, we perform a hydrodynamical simulation with the adaptive mesh refinement code RAMSES. We use the multi-wavelength observational data including X-ray, weak-lensing, radio, and optical spectroscopy to constrain the merger scenario. We present detailed comparisons between the simulation results and these multi-wavelength observations.

  • PDF

Development of Nano Positioning Stage using PZT Actuator (압전 액츄에이터를 이용한 초정밀 위치제어장치 개발)

  • 정상화;차경래
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.214-218
    • /
    • 2002
  • In recent years, precision positioning stage is demanded for some industrial fields such as semi-conductor lithography, ultra precision machining, and fabricating of nano structure. In this research, precision multi-axis positioning stage, which consists of pzt actuator, flexure, and capacitance gauge, is designed and developed. The performance of 3-axis positioning, characteristics of motion and resolution are verified.

  • PDF

On the Beam Focusing Behavior of Time Reversed Ultrasonic Arrays Using a Multi-Gaussian Beam Model

  • Jeong, Hyun-Jo;Lee, Jeong-Sik;Jeong, Yon-Ho;Bae, Sung-Min
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.6
    • /
    • pp.531-537
    • /
    • 2008
  • One of the fundamental features of time reversal acoustic (TRA) techniques is the ability to focus the propagating ultrasonic beam to a specific point within the test material. Therefore, it is important to understand the focusing properties of a TR device in many applications including nondestructive testing. In this paper, we employ an analytical scheme for the analysis of TR beam focusing in a homogeneous medium. More specifically, a nonparaxial multi-Gaussian beam (NMGB) model is used to simulate the focusing behavior of array transducers composed of multiple rectangular elements. The NMGB model is found to generate accurate beam fields beyond the nonparaxial region. Two different simulation cases are considered here for the focal points specified on and off from the central axis of the array transducer. The simulation results show that the focal spot size increases with increasing focal length and focal angle. Furthermore, the maximum velocity amplitude does not always coincide with the specified focal point. Simulation results for the off-axis focusing cases do demonstrate the accurate steering capability of the TR focusing.

Experimental Study on Non-Axisymmetric Rectangular Cup using Multi-Stage Deep Drawing Process (직사각 컵 성형을 위한 다단 디프드로잉 공정의 실험적 연구)

  • Ku, T.W.;Park, J.W.;Heo, S.C.;Kang, B.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.253-262
    • /
    • 2010
  • For multi-stage deep drawing process including ironing operation and biaxial forming in this study, tool developments are achieved, and the developed tool sets are applied to experimental investigations. In process and tool designs, a contact condition between intermediate blank and lower die is considered as the sequential one. In this study, the material used is cold-rolled thin sheet (SPCE) with the initial thickness of 0.4mm. From the experimental approaches, several failures such as tearing, localized thickening and thinning, are observed. To solve these failures, the contact surface on the lower die is modified. As the experimental results by applying the modified lower die, it is investigated that the failures are not occurred, and the excessive deformation behavior due to the thinning and thickening effects are decreased. Furthermore, the thickness distributions on the major axis and the minor axis of each intermediate blank are investigated to be already satisfied the target (ironing) thickness, respectively. By this systematic approach, it is confirmed that the experimental results show good agreements with the designed and required configuration of each deformed and final products.

Development of Multi-Axis Force/Moment Sensor for Stroke Patient's Hand Fixing System Control (뇌졸중 환자의 손 고정장치 제어를 위한 다축 힘/모멘트센서 개발)

  • Kim, H.M.;Kim, J.W.;Kim, G.S.
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.351-356
    • /
    • 2011
  • Stroke patients should exercise for the rehabilitation of their fingers, because they can't use their hand and fingers. Their hand and fingers are fixed on the hand fixing system for rehabilitation exercise of them. But the hands clenched the fist of stroke patients are difficult to fix on it. In order to fix the hands and fingers, their palms are pressed with pressing bars and are controlled by reference force. The fixing system must have a five-axis force/moment sensor to force control. In this paper, the five-axis force/moment sensor was developed for the hand fixing system of finger-rehabilitation exercising system. The structure of the five-axis force/moment sensor was modeled, and designed using finite element method(FEM). And it was fabricated with strain-gages, then, its characteristic test was carried out. As a result, the maximum interference error is less than 2.43 %.

Vertical Axis Tidal Turbine Design and CFD hydrodynamic Analysis (CFD를 이용한 수직축 터빈 설계 및 유동특성 분석)

  • Jo, Chulhee;Ko, Kwangoh;Lee, Junho;Rho, Yuho;Lee, Kanghee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.159.1-159.1
    • /
    • 2011
  • Due to the global warming, the need to secure the alternative resources has become more important worldwide. Having very strong current on the west coast with up to 10 m tidal range, there are many suitable sites for the application of TCP(Tidal current power) in Korea. Not only from the current produced from the high tidal range, but also it can be widely applied to the offshore jetties and piers. The VAT(Vertical axis turbine) system could be very effective tidal device to extract the energies from the attacking flow to the structures. For the relatively slow current speed, the VAT system could be more effective application than HAT(Horizontal axis turbine) device. The performance of VAT can be evaluated by various parameters including number of blades, shape, sectional size, diameters and etc. The paper introduces the multi-layer vertical axis tidal current power system with savonius turbine. The turbine was designed with consideration of optimal blade numbers and the performance was simulated by CFD analysis.

  • PDF

Dynamic Modeling and Characteristics Analysis of Solid Rocket Motor with Multi Axis Pintle Nozzles (다축 핀틀 노즐을 장착한 고체 추진기관의 동적 모델링 및 특성 분석)

  • Ki, Taeseok;Hong, Seokhyun;Park, Ik-soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.20-28
    • /
    • 2015
  • Performance parameters of solid rocket motor with multi axis pintle nozzles were analyzed theoretically and modeled. For figuring out the governed variable of dynamic characteristics of system, dynamic analysis was done by using established model. To present characteristics of this system, the model should include not only internal ballistics of propulsion unit but also actuating system to move pintle. For solid rocket motor with multi axis pintle nozzles, not only performance of steady state but also dynamic characteristic of transient state is important design parameter to precise thrust control. Therefore, response time of open-loop system was analyzed by using established model and requirement about response time was satisfied by controlling pressure.

Fundamental framework toward optimal design of product platform for industrial three-axis linear-type robots

  • Sawai, Kana;Nomaguchi, Yutaka;Fujita, Kikuo
    • Journal of Computational Design and Engineering
    • /
    • v.2 no.3
    • /
    • pp.157-164
    • /
    • 2015
  • This paper discusses an optimization-based approach for the design of a product platform for industrial three-axis linear-type robots, which are widely used for handling objects in manufacturing lines. Since the operational specifications of these robots, such as operation speed, working distance and orientation, weight and shape of loads, etc., will vary for different applications, robotic system vendors must provide various types of robots efficiently and effectively to meet a range of market needs. A promising step toward this goal is the concept of a product platform, in which several key elements are commonly used across a series of products, which can then be customized for individual requirements. However the design of a product platform is more complicated than that of each product, due to the need to optimize the design across many products. This paper proposes an optimization-based fundamental framework toward the design of a product platform for industrial three-axis linear-type robots; this framework allows the solution of a complicated design problem and builds an optimal design method of fundamental features of robot frames that are commonly used for a wide range of robots. In this formulation, some key performance metrics of the robot are estimated by a reducedorder model which is configured with beam theory. A multi-objective optimization problem is formulated to represent the trade-offs among key design parameters using a weighted-sum form for a single product. This formulation is integrated into a mini-max type optimization problem across a series of robots as an optimal design formulation for the product platform. Some case studies of optimal platform design for industrial three-axis linear-type robots are presented to demonstrate the applications of a genetic algorithm to such mathematical models.

Robust Adaptive Output Feedback Control Design for a Multi-Input Multi-Output Aeroelastic System

  • Wang, Z.;Behal, A.;Marzocca, P.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.179-189
    • /
    • 2011
  • In this paper, robust adaptive control design problem is addressed for a class of parametrically uncertain aeroelastic systems. A full-state robust adaptive controller was designed to suppress aeroelastic vibrations of a nonlinear wing section. The design used leading and trailing edge control actuations. The full state feedback (FSFB) control yielded a global uniformly ultimately bounded result for two-axis vibration suppression. The pitching and plunging displacements were measurable; however, the pitching and plunging rates were not measurable. Thus, a high gain observer was used to modify the FSFB control design to become an output feedback (OFB) design while the stability analysis for the OFB control law was presented. Simulation results demonstrate the efficacy of the multi-input multi-output control toward suppressing aeroelastic vibrations and limit cycle oscillations occurring in pre- and post-flutter velocity regimes.