• Title/Summary/Keyword: Multi-Altitude

Search Result 129, Processing Time 0.029 seconds

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

The Effect Analysis of Compression Method on KOMPSAT Image Chain

  • Yong, Sang-Soon;Ra, Sung-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.431-437
    • /
    • 2007
  • Multi-Spectral Camera(MSC) on the KOMPSAT-2 satellite was developed and launched as a main payload to provide 1m of GSD(Ground Sampling Distance) for one(1) channel panchromatic imaging and 4m of GSD for four(4) channel multi-spectral imaging at 685km altitude covering l5km of swath width. Since the compression on MSC image chain was required to overcome the mismatch between input data rate and output date rate JPEG-like method was selected and analyzed to check the influence on the performance. In normal operation the MSC data is being acquired and transmitted with lossy compression ratio to cover whole image channel and full swath width in real-time. In the other hand the MSC performance have carefully been handled to avoid or minimize any degradation so that it was analyzed and restored in KGS(KOMPSAT Ground Station) during LEOP(Launch and Early Operation Phase). While KOMPSAT-2 had been developed, new compression method based upon wavelet for space application was introduced and available for next satellite. The study on improvement of image chain including new compression method is asked for next KOMPSAT which requires better GSD and larger swath width In this paper, satellite image chain which consists of on-board image chain and on-ground image chain including general MSC description is briefly described. The performance influences on the image chain between two on-board compression methods which are or will be used for KOMPSAT are analyzed. The differences on performance between two methods are compared and the better solution for the performance improvement of image chain on KOMPSAT is suggested.

Analysis of the MSC(Multi-Spectral Camera) Operational Parameters

  • Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Kim, Young-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.53-59
    • /
    • 2002
  • The MSC is a payload on the KOMPSAT-2 satellite to perform the earth remote sensing. The instrument images the earth using a push-broom motion with a swath width of 15 km and a GSD(Ground Sample Distance) of 1 m over the entire FOV(Field Of View) at altitude 685 km. The instrument is designed to haute an on-orbit operation duty cycle of 20% over the mission lifetime of 3 years with the functions of programmable gain/offset and on-board image data compression/storage. The MSC instrument has one channel for panchromatic imaging and four channel for multi-spectral imaging covering the spectral range from 450nm to 900nm using TDI(Time Belayed Integration) CCD(Charge Coupled Device) FPA(Focal Plane Assembly). The MSC hardware consists of three subsystem, EOS(Electro Optic camera Subsystem), PMU(Payload Management Unit) and PDTS(Payload Data Transmission Subsystem) and each subsystems are currently under development and will be integrated and verified through functional and space environment tests. Final verified MSC will be delivered to spacecraft bus for AIT(Assembly, Integration and Test) and then COMSAT-2 satellite will be launched after verification process through IST(Integrated Satellite Test). In this paper, the introduction of MSC, the configuration of MSC electronics including electrical interlace and design of CEU(Camera Electronic Unit) in EOS are described. MSC Operation parameters induced from the operation concept are discussed and analyzed to find the influence of system for on-orbit operation in future.

QUICK-LOOK TEST OF KOMPSAT-2 FOR IMAGE CHAIN VERIFICATION

  • Lee Eung-Shik;Jung Dae-Jun;Lee Seung-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.509-511
    • /
    • 2005
  • KOMPSAT -2 equipped with an optical telescope(MSC) will be launched in this year. It can take images of the earth with push-broom scanning at altitude 685Km. Its resolution is 1m in panchromatic channel with a swath width of 15 km After the MSC is tested and the performance is measured at instrument level, it is installed on satellite. The image passes through the electro-optical system, compression and storage unit and fmally downlink sub-systems. This integration procedure necessitates the functional test of all subsystems participating in the image chain. The objective of functional test at satellite level(Quick Look test) is to check the functionality of image chain by real target image. Collimated moving image is input to the EOS in order to simulate the operational environments as if KOMPSAT -2 is being operated in orbit. The image chain from EOS to data downlink subsystem will be verified through Quick Look test. This paper explains the Quick Look test of KOMPSAT -2 and compares the taken images with collimated input ones.

  • PDF

Wing Design Optimization of a Solar-HALE Aircraft

  • Lim, JaeHoon;Choi, Sun;Shin, SangJoon;Lee, Dong-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.15 no.3
    • /
    • pp.219-231
    • /
    • 2014
  • We develop a preliminary design optimization procedure in this paper regarding the wing planform in a solar-powered high-altitude long-endurance unmanned aerial vehicle. A high-aspect-ratio wing has been widely adopted in this type of a vehicle, due to both the high lift-to-drag ratio and lightweight design. In the preliminary design, its characteristics need to be addressed correctly, and analyzed in an appropriate manner. In this paper, we use the three-dimensional Euler equation to analyze the wing aerodynamics. We also use an advanced structural modeling approach based on a geometrically exact one-dimensional beam analysis. Regarding the structural integrity of the wing, we determine detailed configuration parameters, specifically the taper ratio and the span length. Next, we conduct a multi-objective optimization scheme based on the response surface method, using the present baseline configuration. We consider the structural integrity as one of the constraints. We reduce the wing weight by approximately 25.3 % from that in the baseline configuration, and also decrease the power required approximately 3.4 %. We confirm that the optimized wing has sufficient flutter margin and improved static longitudinal/directional stability characteristics, as compared to those of the baseline configuration.

Development of UAV Teleoperation Virtual Environment Based-on GSM Networks and Real Weather Effects

  • AbdElHamid, Amr;Zong, Peng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.463-474
    • /
    • 2015
  • Future Ground Control Stations (GCSs) for Unmanned Aerial Vehicles (UAVs) teleoperation targets better situational awareness by providing extra motion cues to stimulate the vestibular system. This paper proposes a new virtual environment for long range Unmanned Aerial Vehicle (UAV) control via Non-Line-of-Sight (NLoS) communications, which is based on motion platforms. It generates motion cues for the teleoperator for extra sensory stimulation to enhance the guidance performance. The proposed environment employs the distributed component simulation over GSM network as a simulation platform. GSM communications are utilized as a multi-hop communication network, which is similar to global satellite communications. It considers a UAV mathematical model and wind turbulence effects to simulate a realistic UAV dynamics. Moreover, the proposed virtual environment simulates a Multiple Axis Rotating Device (MARD) as Human Machine Interface (HMI) device to provide a complete delay analysis. The demonstrated measurements cover Graphical User Interface (GUI) capabilities, NLoS GSM communications delay, MARD performance, and different software workload. The proposed virtual environment succeeded to provide visual and vestibular feedbacks for teleoperators via GSM networks. The overall system performance is acceptable relative to other Line-of-Sight (LoS) systems, which promises a good potential for future long range, medium altitude UAV teleoperation researches.

Limitations of Electromagnetic Ion Cyclotron Wave Observations in Low Earth Orbit

  • Hwang, Junga;Kim, Hyangpyo;Park, Jaeheung;Lee, Jaejin
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.31-37
    • /
    • 2018
  • Pc1 pulsations are geomagnetic fluctuations in the frequency range of 0.2 to 5 Hz. There have been several observations of Pc1 pulsations in low earth orbit by MAGSAT, DE-2, Viking, Freja, CHAMP, and SWARM satellites. However, there has been a clear limitation in resolving the spatial and temporal variations of the pulsation by using a single-point observation by a single satellite. To overcome such limitations of previous observations, a new space mission was recently initiated, using the concept of multi-satellites, named the Small scale magNetospheric and Ionospheric Plasma Experiments (SNIPE). The SNIPE mission consists of four nanosatellites (~10 kg), which will be launched into a polar orbit at an altitude of 600 km (TBD) in 2020. Four satellites will be deployed in orbit, and the distances between each satellite will be controlled from 10 to 1,000 km by a high-end formation-flying algorithm. One of the possible science targets of the SNIPE mission is observing electromagnetic ion cyclotron (EMIC) waves. In this paper, we report on examples of observations, showing the limitations of previous EMIC observations in low earth orbit, and suggest possibilities to overcome those limitations through a new mission.

Design Optimization of Single-Stage Launch Vehicle Using Hybrid Rocket Engine

  • Kanazaki, Masahiro;Ariyairt, Atthaphon;Yoda, Hideyuki;Ito, Kazuma;Chiba, Kazuhisa;Kitagawa, Koki;Shimada, Toru
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.29-33
    • /
    • 2015
  • The multidisciplinary design optimization (MDO) of a launch vehicle (LV) with a hybrid rocket engine (HRE) was carried out to investigate the ability of an HRE for a single-stage LV. The non-dominated sorting genetic algorithm-II (NSGA-II) was employed to solve two design problems. The design problems were formulated as two-objective cases involving maximization of the downrange distance over the target flight altitude and minimization of the gross weight, for two target altitudes: 50.0 km and 100.0 km. Each objective function was empirically estimated. Several non-dominated solutions were obtained using the NSGA-II for each design problem, and in each case, a trade-off was observed between the two objective functions. The results for the two design problem indicate that economical performance of the LV is limited with the HRE in terms of the maximum downrange distances achievable. The LV geometries determined from the non-dominated solutions were examined.

A Study on Safety Management Methods for Introduction of the Advanced Aircraft by the Republic of Korea Air Force (한국공군의 첨단 항공기 도입에 따른 안전관리방안 연구)

  • Koo, Bon Ean;Lee, Kang Jun
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.29 no.2
    • /
    • pp.36-46
    • /
    • 2021
  • The purpose of this study is to ensure safety by proactively identifying hazards that could be derived from changes in mission form and environment as the advanced aircraft such as F-35A stealth fighter, KC-330 Multi-role transport and tanker, RQ-4B high altitude unmanned reconnaissance aircraft, etc are introduced that the Republic of Korea Air Force(ROKAF) has never been operated so far. To this end, the safety management methods based on proactive and predictive approaches used in advanced countries(US Air Force, UK Royal Air Force, Royal Australian Air Force) operating aircraft types same or similar things being newly powered by the ROKAF were reviewed. In addition, the direction for improvement of the safety management methods operating in the ROKAF and the measures necessary for establishment of the new safety management techniques to be applied were suggested.

Comparison Between Methods for Suitability Classification of Wild Edible Greens (산채류 재배적지 기준설정 방법 간의 비교 분석)

  • Hyun, Byung-Keun;Jung, Sug-Jae;Sonn, Yeon-Kyu;Park, Chan-Won;Zhang, Young-Seon;Song, Kwan-Cheol;Kim, Lee-Hyun;Choi, Eun-Young;Hong, Suk-Young;Kwon, Sun-Ik;Jang, Byoung-Choon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.696-704
    • /
    • 2010
  • The objective of this study was analysis of two methods of land suitability classification for wild edible green. One method was Maximum limiting factor method (MLFM) and the other was Multi-regression method (MRM) for land suitability classification for wild edible green. The investigation was carried out in Pyeongchang, Hongcheong, Hoeingseong, and Yanggu regions in Korea. The obtained results showed that factors related to the decision classification of the land suitability for wild edible green cultivation were land slope, altitude, soil morphology and gravel contents so on. The classification of the best suitability soil for wild edible greens were fine loamy (silty), valley or fan of soil morphology, well drainage class, B-slope (2~7%), available soil depth deeper than 100cm, and altitude higher than 501m. Contribution of soil that influence to crop yields using Multi-regression method were slope 0.30, altitude 0.22, soil morphology 0.13, drainage classes 0.09, available soil depth 0.07, and soil texture 0.01 orders. Using MLFM, area of best suitable land was 0.2%, suitable soil 15.0%, possible soil 16.7%, and low productive soil 68.0% in Hongcheon region of Gangwon province. But, area of best suitable land was 35.1%, suitable soil 30.7%, possible soil 10.3%, and low productive soil 23.9% by MRM. There was big difference of suitable soil area between two methods (MLFM and MRM). When decision classificatin of the land suitability for wild edible green cultivation should consider enough analysis methods. Furthermore, to establishment of land suitability classification for crop would be better use MRM than MLFM.