• Title/Summary/Keyword: Multi wave length

Search Result 68, Processing Time 0.04 seconds

Development of Large-area Plasma Sources for Solar Cell and Display Panel Device Manufacturing

  • Seo, Sang-Hun;Lee, Yun-Seong;Jang, Hong-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.148-148
    • /
    • 2011
  • Recently, there have been many research activities to develop the large-area plasma source, which is able to generate the high-density plasma with relatively good uniformity, for the plasma processing in the thin-film solar cell and display panel industries. The large-area CCP sources have been applied to the PECVD process as well as the etching. Especially, the PECVD processes for the depositions of various films such as a-Si:H, ${\mu}c$-Si:H, Si3N4, and SiO2 take a significant portion of processes. In order to achieve higher deposition rate (DR), good uniformity in large-area reactor, and good film quality (low defect density, high film strength, etc.), the application of VHF (>40 MHz) CCP is indispensible. However, the electromagnetic wave effect in the VHF CCP becomes an issue to resolve for the achievement of good uniformity of plasma and film. Here, we propose a new electrode as part of a method to resolve the standing wave effect in the large-area VHF CCP. The electrode is split up a series of strip-type electrodes and the strip-type electrodes and the ground ones are arranged by turns. The standing wave effect in the longitudinal direction of the strip-type electrode is reduced by using the multi-feeding method of VHF power and the uniformity in the transverse direction of the electrodes is achieved by controlling the gas flow and the gap length between the powered electrodes and the substrate. Also, we provide the process results for the growths of the a-Si:H and the ${\mu}c$-Si:H films. The high DR (2.4 nm/s for a-Si:H film and 1.5 nm/s for the ${\mu}c$-Si:H film), the controllable crystallinity (~70%) for the ${\mu}c$-Si:H film, and the relatively good uniformity (1% for a-Si:H film and 7% for the ${\mu}c$-Si:H film) can be obtained at the high frequency of 40 MHz in the large-area discharge (280 mm${\times}$540 mm). Finally, we will discuss the issues in expanding the multi-electrode to the 8G class large-area plasma processing (2.2 m${\times}$2.4 m) and in improving the process efficiency.

  • PDF

Vortex-induced vibration of a long flexible cylinder in uniform cross-flow

  • Ji, Chunning;Peng, Ziteng;Alam, Md. Mahbub;Chen, Weilin;Xu, Dong
    • Wind and Structures
    • /
    • v.26 no.5
    • /
    • pp.267-277
    • /
    • 2018
  • Numerical simulations are performed of a long flexible cylinder undergoing vortex-induced vibration at a Reynolds number of 500. The cylinder is pinned at both ends, having an aspect ratio of 100 (cylinder length to cylinder diameter) and a mass ratio of 4.2 (structural mass to displaced fluid mass). Temporal and spatial information on the cross-flow (CF) and in-line (IL) vibrations is extracted. High modal vibrations up to the $6^{th}$ in the CF direction and the $11^{th}$ in the IL direction are observed. Both the CF and IL vibrations feature a multi-mode mixed pattern. Mode competition is observed. The $2^{nd}$ mode with a low frequency dominates the IL vibration and its existence is attributed to a wave group propagating back and forth along the span. Distributions of fluid force coefficients are correlated to those of the CF and IL vibrations along the span. Histograms of the x'-y motion phase difference are evaluated from the total simulation time and a complete vibration cycle representing the standing or travelling wave pattern. Correlations between the phase difference and the vibrations are discussed. Vortex structures behind the cylinder show an interwoven near-wake pattern when the standing wave pattern dominates, but an oblique near-wake pattern when the travelling wave pattern prevails.

Fabrication of a Thermopneumatic Valveless Micropump with Multi-Stacked PDMS Layers

  • Jeong, Ok-Chan;Jeong, Dae-Jung;Yang, Sang-Sik
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.4
    • /
    • pp.137-141
    • /
    • 2004
  • In this paper, a thermopneumatic PMDS (polydimethlysiloxane) micropump with nozzle/diffuser elements is presented. The micropump is composed of nozzle/diffuser elements as dynamic valves, an actuator consisting of a circular PDMS diaphragm and a Cr/Au heater on a glass substrate. Four PDMS layers are used for fabrication of an actuator chamber, actuator diaphragm by a spin coating process, spacer layer, and nozzle/diffuser by the SU-8 molding process. The radius and thickness of the actuator diaphragm is 2 mm and 30 ${\mu}{\textrm}{m}$, respectively. The length and the conical angle of the nozzle/diffuser elements are 3.5 mm and 20$^{\circ}$, respectively. The actuator diaphragm is driven by the air cavity pressure variation caused by ohmic heating and natural cooling. The flow rate of the micropump in the frequency domain is measured for various duty cycles of the square wave input voltage. When the square wave input voltage of 5 V DC is applied to the heater, the maximum flow rate of the micropump is 44.6 ${mu}ell$/min at 100 Hz with a duty ratio of 80% under the zero pressure difference.

Lowering Simulation using Floating Crane in Waves (파랑 중 해상 크레인의 하강 작업 수치 시뮬레이션)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Byoung-Wan;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.17-26
    • /
    • 2012
  • A coupled analysis of a floating crane barge with a crane wire and hanging structure is carried out in thetime domain. The motion analysis of the crane barge is based on the floating multi-body dynamics, and thecrane wire is modeled as a simple spring tension. The hanging structure is assumed to be a rigid body with 3 degree-of-freedom translational motion. In this study, numerical simulations were conducted at three different stages. First, the developed code was validated by comparing the time-domain motion response of a crane barge with the frequency-domain results. Then, a coupled analysis of a crane barge and simple structure hanging by the crane wire was performed using the present scheme. The motion response and wire tension from the present calculations are compared with the results of OrcaFlex. The agreement between the two sets of results isfairly good. Last, lowering simulations in regular and irregular waves were conducted considering buoyancy changes in the hanging structure. The effects of the wave conditions, structure's weight, wire length, and lowering speed on the wire tension are considered.

Computational Study on Unsteady Aerodynamic Loads on Crossing Train (교행하는 고속전철의 비정상 공기력에 대한 수치적 연구)

  • Hwang, Jae-Ho;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.599-604
    • /
    • 2000
  • In order to study unsteady aerodynamic loads on high speed trains passing by each other at the speed of 350km/h, three-dimensional flow fields around trains during the crossing event are numerically simulated using the three-dimensional Euler equations. The Roe's FDS with MUSCL interpolation is employed to simulate wave phenomena properly. An efficient moving grid system based on domain decomposition techniques is developed to analyze the unsteady flow field induced by the restricted motion of a train on a rail. The numerical simulations of the trains passing by on the double-track are carried out to study the effect of the train nose-shape, the train length and the existence of tunnel when the crossing event occur. Unsteady aerodynamic loads side force and drag force-acting on the train during the crossing are numerically predicted and anlayzed. It is found that the strength of the side force mainly depends on the nose-shape, and that of drag force on tunnel existence. And it is observed that the push-pull like impulsive force successively acts on each car and acts in different directions between the neighborhood cars. The maximum change of the impulsive force reaches about 3 tons. These aerodynamic force data are absolutely necessary for the evaluation of the stability of the high speed multi-car train. The results also indicate the effectiveness of the present numerical method for the simulation of unsteady flow field induced by the bodies in the relative motion.

  • PDF

A Study on Wave Propagation in Drilling Boreholes at Low Frequencies (석유시추공에서의 저주파음향의 전달에 관한 연구)

  • H.Y. Lee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.2
    • /
    • pp.84-92
    • /
    • 1995
  • To understand how low-frequency sound waves propagate axially in drilling boreholes, the propagation modes and speeds including the effect of interaction among layers are obtained by analyzing an infinitely-long, uniform, and cylindrically multi-layered waveguide which is consisted of fluid layers and solid layers. Assuming low frequency(wave length considered is very long compared to the borehole diameter), axisymmetry, non-viscosity, and etc., analytical solutions are obtained. Also, sound reflection due to the changes in the cross section is analyzed. Results for typical drilling boreholes show the usefulness of the method developed in this research, and are compared with FEM results showing good agreements.

  • PDF

Investigation of Safety and Design of Mooring Lines for Floating Wave Energy Conversion (부유식 파력발전장치용 계류선의 설계 및 안전성 검토에 관한 연구)

  • Jung, Dong-Ho;Nam, Bo-Woo;Shin, Seung-Ho;Kim, Hyeon-Ju;Lee, Ho-Saeng;Moon, Deok-Soo;Song, Je-Ha
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.4
    • /
    • pp.77-85
    • /
    • 2012
  • A study was performed on the design of a mooring line to maintain the position of a floating WEC (wave energy conversion) system. The procedure to design a mooring line is set up and the safety of the designed mooring system is evaluated using commercial software, Orcaflex. The characteristics curve for one line is analyzed to determine the properties and pretension of a mooring line. While considering the ocean environmental condition and importance of a floating WEC system, a multi-line layout is determined. A 4-point mooring system with 4 lines shows the instability in the yaw motion of the floating WEC system under a designed ocean environmental condition. The redesigned 4-point mooring system with 8 lines is found to be safe on the condition of a harsh ocean environment. The floating WEC system with the redesigned mooring system also shows stable motion in surge and pitch under operating conditions. From a parametric study on the mooring line length, the extreme value of the mooring line tension is found to be very sensitive to the pretension and length of mooring line. The results of this study can contribute to the establishment of a design procedure for mooring lines.

On Rate of Multi-Hole Injector for Diesel Engine (디이젤 기관용 다공연료 분사 밸브의 분사율 측정)

  • Jeong, Dal-Sun;An, Su-Gil;Gwon, Gi-Rin
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.22 no.1
    • /
    • pp.41-48
    • /
    • 1986
  • Ifis recommended that the injection rate should be accurate and reliable in the input data of the performance simulation in diesel engine. Matsuoka Sin improved W. Bosch's injection ratio measurement system. Matsuoka Sin reduced length of the test pipe and set the orifice. However, it was not measured accurately to measure the injection ratio due to reflection wave. In the present thesis, the improved measurement system with combination of the conventional W. Bosch type injection ratio measurement system and Matsuoka Sin type corrected W. Bosch type was practically made. The location of orifice and throttle valve was modified and set one more back pressure valve in order to reduce the effect of reflection wave. The results according to injection condition of multi-hole nozzle are following: 1. Measurement error of injection ratio measurement system in this thesis was $\pm$ 1 %, therefore, its reliability was good. 2. The form of injetion ratio is changed from trapezoidal shape to triangle shape with increase of revolution per minute when injection amount is constant. 3. In the case of constant rpm, the initial injection ratio is almost constant regardless of the amount, meanwhile the injection period becomes longer with increase of the amount. 4. The injection pressure of nozzle isn't largely influenced with injection ratio in the case of constant injection amount and rpm, otherwise the initial injection amount is increased by 3-4% when the injection pressure is low. 5. The injection ratio isn't nearly influenced with back pressure.

  • PDF

An Experimental Study on the Characteristics of Rectangular Supersonic Jet on a Flat Plate

  • Kwak, Ji-Young;Lee, Yeol
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.3
    • /
    • pp.324-331
    • /
    • 2016
  • The present study focuses on the characteristics of a supersonic jet flowing from a rectangular nozzle exit on a flat plate. Flow visualization techniques using schlieren and kerosene-lampblack tracing are utilized to investigate shock reflection structures and boundary-layer separations over a flat plate. Wall pressure measurements are also carried out to quantitatively analyze the flow structures. All observations are repeated for multiple jet flow boundary conditions by varying the flap length and nozzle pressure ratio. The experimental results show that the jet flow structures over the flat plate are highly three-dimensional with strong bleeding flows from the plate sides, and that they are sensitive to plate length and nozzle pressure ratio. A multi-component force measurement device is also utilized to observe the characteristics of the jet flow thrust vectoring over the plate. The maximum thrust deflection angle of the jet is about $8^{\circ}$, demonstrating the applicability of thrust vector control via a flat plate installed at the nozzle exit.

Study of the unsteady pressure oscillations induced by rectangular cavities in a supersonic flow field

  • Krishnan L.;Ramakrishna M.;Rajan S.C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.294-298
    • /
    • 2003
  • The complex, unsteady, self-sustained pressure oscillations induced by supersonic flow past a rectangular cavity is investigated using numerical simulations. The present numerical study is performed using a parallel, multiblock solver for the two-dimensional, compressible Navier­Stokes equations. Open cavities with length-to-depth (L / D) ratio in the range 0.5 - 3.3 are considered. This paper sheds light on the cavity physics, cavity oscillatory mechanism, and the organisation of vortical structures inside the cavity. The vortex shedding phenomenon, the shear layer impingement event at the aft wall and the movement of the acoustic/compression wave within the cavity are well predicted. The vortical structures· and the source of the acoustic disturbances are found to be located near the aft wall of the cavity. With the increase in the cavity length, strong recompression of the flow near the aft wall leading to a sudden jump in the cavity form drag is observed. The estimated cavity tones are in good agreement with the available semi­empirical relation. Multiple peaks are noticed in deep and long cavities. For the present free­stream Mach number 1.71, it is observed that around L/D=2.0, the cavity oscillatory mechanism changes from the transverse to longitudinal oscillatory mode. The effects of this transition on various fluid dynamics and acoustic properties are also discussed.

  • PDF