• Title/Summary/Keyword: Multi purpose vehicle

Search Result 128, Processing Time 0.029 seconds

The Transmission Development with P.T.O Axle Design for Work Vehicle Including Multi-faculty (다기능 작업차를 위한 P.T.O 축 및 트랜스밋션의 최적설계 및 개발)

  • Kwac, Lee-Ku;Kim, Jae-Yeol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.108-117
    • /
    • 2008
  • A transmission designed with P.T.O(Power Take-Off) axle for agricultural work vehicles including multi-purpose vehicles has been developed. It is focused on the 4-wheel drive transmission of synchronous contact type for practical use in fruit tree households which is required for a large-sized agricultural vehicle. Concerning to the specification performed, the load capacity is from 500kg to 1,000kg and the safety should be secured for passengers. In addition, the driving condition should also be secured under bad situations of the topographic slope, swampy land and the rest. In order to carry out above tests, a prototype vehicle through strength analysis of transmission design has been manufactured. Consequently, optimal design conditions on the power transmission with multi-purpose vehicle for various jobs are proposed such as an indication of optimal RPM and torque at a certain work situation. The performance test through the prototype of multi-purpose work vehicle is performed and the related data base is achieved. Finally, it is improved on troubles by the analysis of the results of R&D and provided the solutions on problems occurring to mass production in the future.

Multi Objective Vehicle and Drone Routing Problem with Time Window

  • Park, Tae Joon;Chung, Yerim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.1
    • /
    • pp.167-178
    • /
    • 2019
  • In this paper, we study the multi-objectives vehicle and drone routing problem with time windows, MOVDRPTW for short, which is defined in an urban delivery network. We consider the dual modal delivery system consisting of drones and vehicles. Drones are used as a complement to the vehicle and operate in a point to point manner between the depot and the customer. Customers make various requests. They prefer to receive delivery services within the predetermined time range and some customers require fast delivery. The purpose of this paper is to investigate the effectiveness of the delivery strategy of using drones and vehicles together with a multi-objective measures. As experiment datasets, we use the instances generated based on actual courier delivery data. We propose a hybrid multi-objective evolutionary algorithm for solving MOVDRPTW. Our results confirm that the vehicle-drone mixed strategy has 30% cost advantage over vehicle only strategy.

Integrated Vehicle Routing Model for Multi-Supply Centers Based on Genetic Algorithm (유전자알고리즘 및 발견적 방법을 이용한 차량운송경로계획 모델)

  • 황흥석
    • Journal of the Korea Society for Simulation
    • /
    • v.9 no.3
    • /
    • pp.91-102
    • /
    • 2000
  • The distribution routing problem is one of the important problems in distribution and supply center management. This research is concerned with an integrated distribution routing problem for multi-supply centers based on improved genetic algorithm and GUI-type programming. In this research, we used a three-step approach; in step 1 a sector clustering model is developed to transfer the multi-supply center problem to single supply center problems which are more easy to be solved, in step 2 we developed a vehicle routing model with time and vehicle capacity constraints and in step 3, we developed a GA-TSP model which can improve the vehicle routing schedules by simulation. For the computational purpose, we developed a GUI-type computer program according to the proposed methods and the sample outputs show that the proposed method is very effective on a set of standard test problems, and it could be potentially useful in solving the distribution routing problems in multi-supply center problem.

  • PDF

A Study on Multi Pass Transmission System for a Flywheel Hybrid Vehicle (플라이휘일 하이브리드 차량의 다경로 동력전달장치 연구)

  • 송한림;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.3
    • /
    • pp.106-116
    • /
    • 1997
  • In this paper, using MATLAB SIMULINK, a generalized design methodology was suggested for multi pass transmission(MPT) by classifying the vehicle power train as prime mover, MPT and vehicle dynamics. This approach enables a designer to investigate the influence of each transmission component by simple combination of system components without changes of overall program. Using the design methodology, a MPT consisting of CVT, 2, clutches and reduction gears was designed for a braking energy regenerative flywheel hybrid vehicle. The CVT is essential in order to connect the engine and flywheel speed with the vehicle speed. For the purpose of smooth clutch operation, control algorithm was suggested by introducing dead zone for the clutch engagement. Using the SIMULINK model, performance of the flywheel hybrid vehicle with MPT was investigated. It was observed from the simulation results that the MPT vehicle showed better fuel economy, 47% than that of AT vehicle, 27% than that of CVT vehicle for ECE-15 driving cycle. Especially destinct fuel efficiency improvement was obtained for city driving cycle requiring more frequent stop and start.

  • PDF

Multi-objective optimization of double wishbone suspension of a kinestatic vehicle model for handling and stability improvement

  • Bagheri, Mohammad Reza;Mosayebi, Masoud;Mahdian, Asghar;Keshavarzi, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.633-638
    • /
    • 2018
  • One of the important problems in the vehicle design is vehicle handling and stability. Effective parameters which should be considered in the vehicle handling and stability are roll angle, camber angle and scrub radius. In this paper, a planar vehicle model is considered that two right and left suspensions are double wishbone suspension system. For a better analysis of the suspension geometry, a kinestatic model of vehicle is considered which instantaneous kinematic and statics relations are analyzed simultaneously. In this model, suspension geometry is considered completely. In order to optimum design of double wishbones suspension system, a multi-objective genetic algorithm is applied. Three important parameters of suspension including roll angle, camber angle and scrub radius are taken into account as objective functions. Coordinates of suspension hard points are design variables of optimization which optimum values of them, corresponding to each optimum point, are obtained in the optimization process. Pareto solutions for three objective functions are derived. There are important optimum points in these Pareto solutions which each point represents an optimum status in the model. In other words, corresponding to any optimal point, a specific geometric position is determined for the suspension hard points. Each of the obtained points in the Pareto optimization can be selected for a special design purpose by designer to create an optimum condition in the vehicle handling and stability.

Multi-system vehicle formation control based on nearest neighbor trajectory optimization

  • Mingxia, Huang;Yangyong, Liu;Ning, Gao;Tao, Yang
    • Advances in nano research
    • /
    • v.13 no.6
    • /
    • pp.587-597
    • /
    • 2022
  • In the present study, a novel optimization method in formation control of multi -system vehicles based on the trajectory of the nearest neighbor trajectory is presented. In this regard, the state equations of each vehicle and multisystem is derived and the optimization scheme based on minimizing the differences between actual positions and desired positions of the vehicles are conducted. This formation control is a position-based decentralized model. The trajectory of the nearest neighbor are optimized based on the current position and state of the vehicle. This approach aids the whole multi-agent system to be optimized on their trajectory. Furthermore, to overcome the cumulative errors and maintain stability in the network a semi-centralized scheme is designed for the purpose of checking vehicle position to its predefined trajectory. The model is implemented in Matlab software and the results for different initial state and different trajectory definition are presented. In addition, to avoid collision avoidance and maintain the distances between vehicles agents at a predefined desired distances. In this regard, a neural fuzzy network is defined to be utilized in conjunction with the control system to avoid collision between vehicles. The outcome reveals that the model has acceptable stability and accuracy.

A Vehicle Fleet Planning System with Multi-objective Optimization (다목적 최적화를 고려한 배차계획 시스템)

  • 양병희;이영애
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.19 no.3
    • /
    • pp.63-79
    • /
    • 1994
  • Many vehicle fleet planning systems have been suggested to minimize the routing distances of vehicles or reduce the transportation cost. But the more considerations the method takes, the higher complexites are involved in a large number of practical situations. The purpose of this paper is to vehicle fleet planning system. This paper is considered multi-objective optimization. The vehicle fleet planning system developed by this study involves such complicated and restricted conditions as one depot, multiple nodes (demand points), multiple vehicle types, multipel order items, and other many restrictions for operating vehicles. The proposed algorithm is compared with the nearest neighbor heuristic (NNH) and the savings heuristic (SAH) algorithm in terms of total logistics cost and driving time. This method constructs a route with a minimum number of vehicles for a given demand. This method can be used to any companys which vehicle fleet planning system under circumstances considered in this paper.

  • PDF

A Study for Color Recognition and Material Delivery of Distributed Multi Vehicles Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 분산 Multi Vehicle의 컬러인식을 통한 물체이송에 관한 연구)

  • Kim, Hun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.2
    • /
    • pp.323-329
    • /
    • 2001
  • In this paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The proposed method reaveals a great deal of improvement on its performance.

A Design of Color-identifying Multi Vehicle Controller for Material Delivery Using Adaptive Fuzzy Controller (적응 퍼지제어기를 이용한 컬러식별 Multi Vehicle의 물류이송을 위한 다중제어기 설계)

  • Kim, Hun-Mo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.42-49
    • /
    • 2001
  • In This paper, we present a collaborative method for material delivery using a distributed vehicle agents system. Generally used AGV(Autonomous Guided Vehicle) systems in FA(Factory Automation) require extraordinary facilities like guidepaths and landmarks and have numerous limitations for application in different environments. Moreover in the case of controlling multi vehicles, the necessity for developing corporation abilities like loading and unloading materials between vehicles including different types is increasing nowadays for automation of material flow. Thus to compensate and improve the functions of AGV, it is important to endow vehicles with the intelligence to recognize environments and goods and to determine the goal point to approach. In this study we propose an interaction method between hetero-type vehicles and adaptive fuzzy logic controllers for sensor-based path planning methods and material identifying methods which recognizes color. For the purpose of carrying materials to the goal, simple color sensor is used instead of intricate vision system to search for material and recognize its color in order to determine the goal point to transfer it to. The technique for the proposed method will be demonstrated by experiment.

  • PDF

A Study on the Development of the VTL Vehicle Dynamics Model to Analyze Vibration Characteristics (차량 진동특성 해석을 위한 VTL 차량 모델 개발에 관한 연구)

  • Kwon, Seong-Jin;Bae, Chul-Yong;Kim, Chan-Jung;Lee, Bong-Hyun;Koo, Byoung-Kook;Rho, Guck-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.409-414
    • /
    • 2007
  • Nowadays, with the advancement of computational mechanics, and vehicle dynamics simulation linked up with virtual testing laboratory(VTL) and virtual proving ground(VPG) technologies has become a useful method for analyzing numerous driving performances and diverse noise/vibration characteristics. In this paper, the analytical vehicle model based on multi-body dynamics theory was developed to investigate the vibration characteristics according to various road conditions. For the purpose, the whole vehicle parameters, each vehicle's part parameter, and part connecting elements such as spring, damper, and bush were measured by an experiment. Also, the vehicle dynamics model, which includes the front suspension, rear suspension, steering, front wheel, rear wheel, and body subsystems has been constructed for computer simulation. With the developed vehicle dynamics model, three forces and three moments measured at each wheel center were applied to evaluate and analyze dynamics and vibration characteristics for miscellaneous road conditions.

  • PDF