• Title/Summary/Keyword: Multi physics

Search Result 668, Processing Time 0.025 seconds

The Immediate Effect of Electroacupuncture at the B62(Shinmaek) K6(Chohae) on the EEG of Vascular Dementia (신맥 조해의 전침자극이 치매환자의 뇌파에 미치는 영향)

  • Park, Woo-Soon;Lee, Tae-Young;Kim, Soo-Yong;Lee, Kwang-Gyu;Yuk, Sang-Won;Lee, Chang-Hyun;Lee, Sang-Ryong
    • Journal of Acupuncture Research
    • /
    • v.18 no.2
    • /
    • pp.67-78
    • /
    • 2001
  • The aim of this study was to examine the effects of low frequency electroacupuncture(EA) at the $B_{62}$ (Shinmaek) $K_6$(Chohae) on vascular dementia in humans using nonlinear dynamics. Electroencephalogram(EEG) is a multi-scaled signal consisting of several components of time series with different dominant frequency ranges and different origins. Nonlinear measures of the EEG like the correlation dimension ($D_2$) and the first positive Lyapunov exponent ($L_1$) reflect the complexity of the EEG. In this study, $D_2$ was used as a measure of complexity. Sixteen channel EEG study was carried out in six subjects (5 females and 1 males; $age=83.83{\pm}7.19years$). We found that the baseline $D_2$ values of the EEG at F4 and F8 channels (P<0.01) were lowered than during the acupuncture treatment, indicating decreased complexity of the EEG. However, the comparison with that before and after the treatment shows no significant differences in all channels.

  • PDF

Design of a Double-Faced Window Printed Antenna for Aircraft Applications (항공기용 양면 인쇄형 글래스 안테나 설계)

  • Byun, Gang-Il;Han, Wone-Keun;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.131-139
    • /
    • 2011
  • In this paper, we propose a double-faced window printed antenna for aircraft applications. The proposed antenna structure consists of a feeding line and a multi-loop radiator located on different sides of the window to use the limited given-area effectively. The proposed antenna is optimized by the genetic algorithm in conjunction with the FEKO EM simulator. The optimized antenna is built and installed on a 1/10 sized KUH-Surion mock-up and antenna performances such as the reflection coefficient and the radiation patterns are measured. The optimized antenna shows a half power matching bandwidth of about 33 % at 60 MHz and an average bore-sight gain of about -3.49 dBi. To verify the reception capability of the optimized antenna, we simulated the received power according to a flight scenario. The result confirms that the optimized antenna shows a minimum received power level above -60 dBm at a range of 200 km, which is similar to the pole antenna that is currently used as a FM voice antenna for KUH-Surion.

EDISON Platform to Supporting Education and Integration Research in Computational Science (계산과학 시뮬레이션을 위한 웹 인터페이스 자동 생성 시스템 개발)

  • Jin, Du-Seok;Lee, Jong-Suk Ruth;Cho, Kum-Won;Jeong, Jae-You;Jung, Hoe-Kyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2011.10a
    • /
    • pp.799-801
    • /
    • 2011
  • Computational science is a field of study concerned with constructing mathematical models and quantitative analysis techniques and using large computing resources to solve the problems which are difficult to approach in a physical experimentally. Recently, a new web-based simulation environment for computational science is becoming more and more popular for supporting multi-user access without restriction of space or time, however, to develop web-based simulation applications, the researchers performed their works too much difficulty. In this paper, we present automated web interface generation tool that allows applied researchers to concentrate on advanced research in their scientific disciplines such as Chemistry, Physics, Structural Dynamics.

  • PDF

Comparison of light-transmittance in dental tissues and dental composite restorations using incremental layering build-up with varying enamel resin layer thickness

  • Rocha Maia, Rodrigo;Oliveira, Dayane;D'Antonio, Tracy;Qian, Fang;Skif, Frederick
    • Restorative Dentistry and Endodontics
    • /
    • v.43 no.2
    • /
    • pp.22.1-22.9
    • /
    • 2018
  • Objectives: To evaluate and compare light-transmittance in dental tissues and dental composite restorations using the incremental double-layer technique with varying layer thickness. Materials and Methods: B1-colored natural teeth slabs were compared to dental restoration build-ups with A2D and B1E-colored nanofilled, supra-nanofilled, microfilled, and microhybrid composites. The enamel layer varied from 0.3, 0.5, or 1.2 mm thick, and the dentin layer was varied to provide a standardized 3.7 mm overall sample thickness (n = 10). All increments were light-cured to $16J/cm^2$ with a multi-wave LED (Valo, Ultradent). Using a spectrophotometer, the samples were irradiated by an RGB laser beam. A voltmeter recorded the light output signal to calculate the light-transmittance through the specimens. The data were analyzed using 1-way analysis of variance followed by the post hoc Tukey's test (p = 0.05). Results: Mean light-transmittance observed at thicker final layers of enamel were significantly lower than those observed at thinner final layers. Within 1.2 mm final enamel resin layer (FERL) thickness, all composites were similar to the dental tissues, with exception of the nanofilled composite. However, within 0.5 mm FERL thickness, only the suprananofilled composite showed no difference from the dental tissues. Within 0.3 mm FERL thickness, none of the composites were similar to the dental tissues. Conclusions: The supra-nanofilled composite had the most similar light-transmittance pattern when compared to the natural teeth. However, for other composites, thicker FERL have a greater chance to match the light-transmittance of natural dental tissues.

Numerical Studies on the Control Performance of Fiber Orientation for Nozzle with Inside Blades (타설 노즐의 내부 블레이드에 의한 섬유 방향성 제어 성능에 관한 수치 해석적 연구)

  • Lee, Jong-Han
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.157-163
    • /
    • 2018
  • This study is aimed at controlling the fiber orientation and improve the fiber distribution in fiber-reinforced cement composites using blades that can be placed inside the existing nozzles. To optimize the blade parameters, multi-physics finite element analysis was performed that could account for the flow of the cementitious matrix material, the movement of the entrained fibers, and the interactions with the nozzle. As a result, this study defined the blade distance, length, and position as a function of the fiber length to be used in the field. The blades with a distance from 1.2 to 2.4 times the fiber length and length from 4 to 8 times the fiber length, as well as located at below 14 times the fzfiber length from the nozzle exit maintained the fiber orientation angle less than $5^{\circ}$. In addition, the blade-type nozzle proposed in the study can be attachable and detachable to the conventional casting equipment, and thus it can provide the usability and convenience in practical applications.

A Study on the Application of Phase Change Material for Electric Vehicle Battery Thermal Management System using Dymola (전기자동차 배터리팩 열관리시스템에서 상변화물질 적용에 관한 고찰)

  • Choi, Chulyoung;Choi, Woongchul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1889-1894
    • /
    • 2017
  • Global automobile manufacturers are developing electric vehicles (EVs) to eliminate the pollutant emissions from internal combustion vehicles and to minimize fossil fuel consumptions for the future generations. However, EVs have a disadvantage of shorter traveling distance than that of conventional vehicles. To answer this shortfall, more batteries are installed in the EV to satisfy the consumer expectation for the driving range. However, as the energy capacity of the battery mounted in the EV increases, the amount of heat generated by each cell also increases. Naturally, a better battery thermal management system (BTMS) is required to control the temperature of the cells efficiently because the appropriate thermal environment of the cells greatly affects the power output from the battery pack. Typically, the BTMS is divided into an active and a passive system depending on the energy usage of the thermal management system. Heat exchange materials usually include gas and liquid, semiconductor devices and phase change material (PCM). In this study, an application of PCM for a BTMS was investigated to maintain an optimal battery operating temperature range by utilizing characteristics of a PCM, which can accumulate large amounts of latent heat. The system was modeled using Dymola from Dassault Systems, a multi-physics simulation tool. In order to compare the relative performance, the BTMS with the PCM and without the PCM were modeled and the same battery charge/discharge scenarios were simulated. Number of analysis were conducted to compare the battery cooling performance between the model with the aluminum case and PCM and the model with the aluminum case only.

Three-D core multiphysics for simulating passively autonomous power maneuvering in soluble-boron-free SMR with helical steam generator

  • Abdelhameed, Ahmed Amin E.;Chaudri, Khurrum Saleem;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2699-2708
    • /
    • 2020
  • Helical-coil steam generator (HCSG) technology is a major design candidate for small modular reactors due to its compactness and capability to produce superheated steam with high generation efficiency. In this paper, we investigate the feasibility of the passively autonomous power maneuvering by coupling the 3-D transient multi-physics of a soluble-boron-free (SBF) core with a time-dependent HCSG model. The predictor corrector quasi-static method was used to reduce the cost of the transient 3-D neutronic solution. In the numerical system simulations, the feedwater flow rate to the secondary of the HCSGs is adjusted to extract the demanded power from the primary loop. This varies the coolant temperature at the inlet of the SBF core, which governs the passively autonomous power maneuvering due to the strongly negative coolant reactivity feedback. Here, we simulate a 100-50-100 load-follow operation with a 5%/minute power ramping speed to investigate the feasibility of the passively autonomous load-follow in a 450 MWth SBF PWR. In addition, the passively autonomous frequency control operation is investigated. The various system models are coupled, and they are solved by an in-house Fortran-95 code. The results of this work demonstrate constant steam temperature in the secondary side and limited variation of the primary coolant temperature. Meanwhile, the variations of the core axial shape index and the core power peaking are sufficiently small.

Analysis of Integration Factor Effect in Dynamic-Structure-Fluid-Heat Coupled Time Transient Staggered Integration Scheme for Morton Effect Analysis (모튼이펙트 해석을 위한 동역학-구조-유체-열전달 시간과도응답 연성해석 시차적분법에서 시상수 효과 분석)

  • Suh, Junho;Jeung, Sung-Hwa
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.77-86
    • /
    • 2019
  • The present study focuses on the effect of staggered integration factor (SIF) on Morton effect simulation results. The Morton effect is a synchronous rotordynamic instability problem caused by the temperature differential across the journal in fluid film bearings. Convection and conduction of heat in the thin film displaces the hot spot, which is the hottest circumferential position in the thin film, from -20 to 40 degrees ahead of the high spot, where the minimum film clearance is experienced. The temperature differential across the journal causes a bending moment and the corresponding thermal bow in the rotating frame acts like a distributed synchronous excitation in the fixed frame. This thermal bow may cause increased vibrations and continued growth of the synchronous orbit into a limit cycle. The SIF is developed assuming that the response of the rotor-lubricant-bearing dynamic system is much quicker than that of the bearing-journal thermal system, and it is defined as the ratio between the simulation time of the thermal system and the rotor-spinning period. The use of the SIF is unavoidable for efficient computing. The value of the SIF is chosen empirically by the software users as a value between 100 and 400. However, the effect of the SIF on Morton effect simulation results has not been investigated. This research produces simulation results with different values of SIF.

Simulation of underwater echo reduction using miniaturized Helmholtz resonators (소형화된 헬름홀츠 공진기를 이용한 수중 반향음 감소해석 모의실험)

  • Park, SungJun;Kim, Jedo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.38 no.1
    • /
    • pp.67-72
    • /
    • 2019
  • In this study, we investigate the echo reduction performance of miniaturinzed Helmholtz resonators using smaller than wavelength acoustic metamaterial structures. The Helmholtz resonators are formed using air structures which exhibit large impedance mismatch with the surrounding underwater environment. Using the multi-physics software package, we find that significant reduction in the sonar signature is expected and frequency tailoring is possible by controlling the degree of space coiling and inner volume of the resonators. We find that for the basic Helmholtz resonators, up to 7 dB reduction in echo is expected at 10,000 Hz while when the miniaturized Helmoholtz resonators are used, up to 14 dB reduction in echo is expected at 5,000 Hz. In addition, frequency tailoring is demonstrated by varying the internal volume of the Helmholtz resonators and broadband characteristic is shown using superposition of various degree of space coiled structures. Through this study we investigate the effectiveness of the miniaturized Helmholtz resonators formed using air structures and the echo reduction results show promisses in the application of achieving underwater stealth.

Analysis of the potential landslide hazard after wildfire considering compound disaster effect (복합재해 영향을 고려한 산불 후 산사태 잠재적 피해 위험도 분석)

  • Lee, Jong-Ook;Lee, Dong-Kun;Song, Young-Il
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.22 no.1
    • /
    • pp.33-45
    • /
    • 2019
  • Compound disaster is the type that increases the impact affected by two or more hazard events, and attention to compound disaster and multi-hazards risk is growing due to potential damages which are difficult to predict. The objective of this study is to analyze the possible impacts of post-fire landslide scenario quantitatively by using TRIGRS (Transient Rainfall Infiltration and Grid-Based Regional Slope-Stability Analysis), a physics-based landslide model. In the case of wildfire, soil organic material and density are altered, and saturated hydraulic conductivity decrease because of soil exposed to high temperature. We have included the change of soil saturated hydraulic conductivity into the TRIGRS model through literature review. For a case study, we selected the area of $8km^2$ in Pyeongchang County. The landslide modeling process was calibrated before simulate the post-wildfire impact based on landslide inventory data to reduce uncertainty. As a result, the mean of the total factor of safety values in the case of landslide was 2.641 when rainfall duration is 1 hour with rainfall intensity of 100mm per day, while the mean value for the case of post-wildfire landslide was lower to 2.579, showing potential landslide occurrence areas appear more quickly in the compound disaster scenario. This study can be used to prevent potential losses caused by the compound disaster such as post-wildfire debris flow or landslides.