• Title/Summary/Keyword: Multi photon process

Search Result 13, Processing Time 0.03 seconds

Multi-Frame Face Classification with Decision-Level Fusion based on Photon-Counting Linear Discriminant Analysis

  • Yeom, Seokwon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.332-339
    • /
    • 2014
  • Face classification has wide applications in security and surveillance. However, this technique presents various challenges caused by pose, illumination, and expression changes. Face recognition with long-distance images involves additional challenges, owing to focusing problems and motion blurring. Multiple frames under varying spatial or temporal settings can acquire additional information, which can be used to achieve improved classification performance. This study investigates the effectiveness of multi-frame decision-level fusion with photon-counting linear discriminant analysis. Multiple frames generate multiple scores for each class. The fusion process comprises three stages: score normalization, score validation, and score combination. Candidate scores are selected during the score validation process, after the scores are normalized. The score validation process removes bad scores that can degrade the final output. The selected candidate scores are combined using one of the following fusion rules: maximum, averaging, and majority voting. Degraded facial images are employed to demonstrate the robustness of multi-frame decision-level fusion in harsh environments. Out-of-focus and motion blurring point-spread functions are applied to the test images, to simulate long-distance acquisition. Experimental results with three facial data sets indicate the efficiency of the proposed decision-level fusion scheme.

Fabrication of Three-Dimensional Curved Microstructures by Two-Photon Polymerization Employing Multi-Exposure Voxel Matrix Scanning Method (다중조사 복셀 매트릭스 스캐닝법을 이용한 이광자 중합에 의한 마이크로 3차원 곡면형상 제작)

  • Lim, Tae-Woo;Park, Sang-Hu;Yang, Dong-Yol;Kong, Hong-Jin;Lee, Kwang-Sup
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.418-421
    • /
    • 2005
  • Three-dimensional (3D) microfabrication process using two-photon polymerization (TPP) is developed to fabricate the curved microstructures in a layer, which can be applied potentially to optical MEMS, nano/micro-devices, etc. A 3D curved structure can be expressed using the same height-contours that are defined by symbolic colors which consist of 14 colors. Then, the designed bitmap figure is transformed into a multi-exposure voxel matrix (MVM). In this work a multi-exposure voxel matrix scanning method is used to generate various heights of voxels according to each laser exposure time that is assigned to the symbolic colors. An objective lens with a numerical aperture of 1.25 is employed to enlarge the variation of a voxel height in the range of 1.2 to 6.4 um which can be controlled easily using the various exposure time. Though this work some 3D curved micro-shapes are fabricated directly to demonstrate the usefulness of the process without a laminating process that is generally required in a micro-stereolithography process.

Fabrication of 3D Metallic Molds for Multi-replication of Microstructures (극미세 3 차원 형상복제를 위한 금속몰드 제작에 관한 연구)

  • Bae, Kong-Myung;Ko, Jong-Soo;Park, Sang-Hu;Lim, Tae-Woo;Yang, Dong-Yol
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.8
    • /
    • pp.119-125
    • /
    • 2009
  • Fabrication of a three-dimensional (3D) metallic mold for multi-production of a microstructure was studied to settle the problem of long processing time in 3D microfabrication. To date, complicated 3D microstructures including 3D photonic crystals, 3D microlens array, 3D filter for microfludics, and something else were created successfully using the two-photon polymerization (TPP) which was considered as paving the way to fabricate a real 3D shape in nano/microscale. However, for those fabrications, much processing time and efforts were inevitably required. To solve this issue, a simple and effective way was proposed in this paper; 3D master patterns were prepared using TPP, and then counter-shaped Ni molds were fabricated by electroforming process. By using these molds, 3D microstructures can be reproduced with short-processing time and low-effort comparing to the conventional approach, TPP We report some parameters to fabricate a metallic mold precisely.

Transition of Femtosecond Laser Ablation Mechanism for Sodalime Glass Caused by Photoinduced Defects

  • Jeoung, Sae-Chae;Choi, Jun-Rye;Park, Myung-Il;Park, Mi-Ra;Choi, Dae-Sik
    • Journal of the Optical Society of Korea
    • /
    • v.7 no.3
    • /
    • pp.150-155
    • /
    • 2003
  • Femtosecond laser ablation mechanism was systematically investigated on sodalime glass in ambient conditions. The ablation crater diameter was measured for varying numbers of laser pulses as for varying well as the laser fluence. The analysis of the results with a one dimensional spatial Gaussian fluence distribution reveals that the inherent ablation mechanism has been altered from a multi-photon process to a single photon excitation due to defect sites that have been accumulated by successive laser pulses. Furthermore, the transition between the two regimes was found to be a function of both the laser fluence and the number of laser shots.

Improved Photovoltaic Performance of Inverted Polymer Solar Cells using Multi-functional Quantum-dots Monolayer

  • Moon, Byung Joon;Lee, Kyu Seung;Kim, Sang Jin;Shin, Dong Heon;Oh, Yelin;Lee, Sanghyun;Kim, Tae-Wook;Park, Min;Son, Dong Ick;Bae, Sukang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.400.1-400.1
    • /
    • 2016
  • Interfacial engineering approaches as an efficient strategy for improving the power conversion efficiencies (PCEs) of inverted polymer solar cells (iPSCs) has attracted considerable attention. Recently, polymer surface modifiers, such as poly(ethyleneimine) (PEI) and polyethylenimine ethoxylated (PEIE), were introduced to produce low WF electrodes and were reported to have good electron selectivity for inverted polymer solar cells (iPSCs) without an n-type metal oxide layer. To obtain more efficient solar cells, quantum dots (QDs) are used as effective sensitizers across a broad spectral range from visible to near IR. Additionally, they have the ability to efficiently generate multiple excitons from a single photon via a process called carrier multiplication (CM) or multiple exciton generation (MEG). However, in general, it is very difficult to prepare a bilayer structure with an organic layer and a QD interlayer through a solution process, because most solvents can dissolve and destroy the organic layer and QD interlayer. To present a more effective strategy for surpassing the limitations of traditional methods, we studied and fabricated the highly efficient iPSCs with mono-layered QDs as an effective multi-functional layer, to enhance the quantum yield caused by various effects of QDs monolayer. The mono-layered QDs play the multi-functional role as surface modifier, sub-photosensitizer and electron transport layer. Using this effective approach, we achieve the highest conversion efficiency of ~10.3% resulting from improved interfacial properties and efficient charge transfer, which is verified by various analysis tools.

  • PDF

Estimation of Jaw and MLC Transmission Factor Obtained by the Auto-modeling Process in the Pinnacle3 Treatment Planning System (피나클치료계획시스템에서 자동모델화과정으로 얻은 Jaw와 다엽콜리메이터의 투과 계수 평가)

  • Hwang, Tae-Jin;Kang, Sei-Kwon;Cheong, Kwang-Ho;Park, So-Ah;Lee, Me-Yeon;Kim, Kyoung-Ju;Oh, Do-Hoon;Bae, Hoon-Sik;Suh, Tae-Suk
    • Progress in Medical Physics
    • /
    • v.20 no.4
    • /
    • pp.269-276
    • /
    • 2009
  • Radiation treatment techniques using photon beam such as three-dimensional conformal radiation therapy (3D-CRT) as well as intensity modulated radiotherapy treatment (IMRT) demand accurate dose calculation in order to increase target coverage and spare healthy tissue. Both jaw collimator and multi-leaf collimators (MLCs) for photon beams have been used to achieve such goals. In the Pinnacle3 treatment planning system (TPS), which we are using in our clinics, a set of model parameters like jaw collimator transmission factor (JTF) and MLC transmission factor (MLCTF) are determined from the measured data because it is using a model-based photon dose algorithm. However, model parameters obtained by this auto-modeling process can be different from those by direct measurement, which can have a dosimetric effect on the dose distribution. In this paper we estimated JTF and MLCTF obtained by the auto-modeling process in the Pinnacle3 TPS. At first, we obtained JTF and MLCTF by direct measurement, which were the ratio of the output at the reference depth under the closed jaw collimator (MLCs for MLCTF) to that at the same depth with the field size $10{\times}10\;cm^2$ in the water phantom. And then JTF and MLCTF were also obtained by auto-modeling process. And we evaluated the dose difference through phantom and patient study in the 3D-CRT plan. For direct measurement, JTF was 0.001966 for 6 MV and 0.002971 for 10 MV, and MLCTF was 0.01657 for 6 MV and 0.01925 for 10 MV. On the other hand, for auto-modeling process, JTF was 0.001983 for 6 MV and 0.010431 for 10 MV, and MLCTF was 0.00188 for 6 MV and 0.00453 for 10 MV. JTF and MLCTF by direct measurement were very different from those by auto-modeling process and even more reasonable considering each beam quality of 6 MV and 10 MV. These different parameters affect the dose in the low-dose region. Since the wrong estimation of JTF and MLCTF can lead some dosimetric error, comparison of direct measurement and auto-modeling of JTF and MLCTF would be helpful during the beam commissioning.

  • PDF

Efficiency of Gas-Phase Ion Formation in Matrix-Assisted Laser Desorption Ionization with 2,5-Dihydroxybenzoic Acid as Matrix

  • Park, Kyung Man;Ahn, Sung Hee;Bae, Yong Jin;Kim, Myung Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.3
    • /
    • pp.907-911
    • /
    • 2013
  • Numbers of matrix- and analyte-derived ions and their sum in matrix-assisted laser desorption ionization (MALDI) of a peptide were measured using 2,5-dihydroxybenzoic acid (DHB) as matrix. As for MALDI with ${\alpha}$-cyano-4-hydroxy cinnamic acid as matrix, the sum was independent of the peptide concentration in the solid sample, or was the same as that of pure DHB. This suggested that the matrix ion was the primary ion and that the peptide ion was generated by matrix-to-peptide proton transfer. Experimental ionization efficiencies of $10^{-5}-10^{-4}$ for peptides and $10^{-8}-10^{-7}$ for matrices are far smaller than $10^{-3}-10^{-1}$ for peptides and $10^{-5}-10^{-3}$ for matrices speculated by Hillenkamp and Karas. Number of gas-phase ions generated by MALDI was unaffected by laser wavelength or pulse energy. This suggests that the main role of photo-absorption in MALDI is not in generating ions via a multi-photon process but in ablating materials in a solid sample to the gas phase.

High-Efficiency Dye-Sensitized Solar Cells by Extended Spectral Response Utilizing Dye Selective Positioning Method

  • Lee, Do-Gwon;Park, Se-Ung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.12.1-12.1
    • /
    • 2010
  • We have developed a facile method to position different dyes (N719 and N749) sequentially in a mesoporous TiO2 layer through selective desorption and adsorption processes. Only upper part of the first adsorbed N719 dye was selectively removed by the desorption solution formulated with polypropylene glycol and tetrabutylammonium hydroxide without any damages of the dye. The desorption depth was controlled by the number of desorption process. Multi-dyed dye-sensitized solar cells (MDSSC) were fabricated by utilizing the method and their photovoltaic properties were investigated. From the incident photon-to-current conversion efficiency (IPCE) measurement, it was found that the MDSSC exhibited the extended spectral response for the solar spectrum while without decrease of maximum IPCE value compare to the DSSCs using one kind of dye (N719 or N749). The highest photocurrent density of 19.3 mA/cm2 was obtained from the MDSSC utilizing $15\;{\mu}m$ N719 / $14\;{\mu}m$ N749 bi-layered mesoporous TiO2 film. The photocurrent density was 25% and 8% higher than that of the DSSC using only N719 and N749 dye as a sensitizer, respectively. The power conversion efficiency of 9.8% was achieved from the MDSSC under the AM 1.5G one sun illumination.

  • PDF