• Title/Summary/Keyword: Multi classification

Search Result 1,251, Processing Time 0.037 seconds

Multi-Radial Basis Function SVM Classifier: Design and Analysis

  • Wang, Zheng;Yang, Cheng;Oh, Sung-Kwun;Fu, Zunwei
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.6
    • /
    • pp.2511-2520
    • /
    • 2018
  • In this study, Multi-Radial Basis Function Support Vector Machine (Multi-RBF SVM) classifier is introduced based on a composite kernel function. In the proposed multi-RBF support vector machine classifier, the input space is divided into several local subsets considered for extremely nonlinear classification tasks. Each local subset is expressed as nonlinear classification subspace and mapped into feature space by using kernel function. The composite kernel function employs the dual RBF structure. By capturing the nonlinear distribution knowledge of local subsets, the training data is mapped into higher feature space, then Multi-SVM classifier is realized by using the composite kernel function through optimization procedure similar to conventional SVM classifier. The original training data set is partitioned by using some unsupervised learning methods such as clustering methods. In this study, three types of clustering method are considered such as Affinity propagation (AP), Hard C-Mean (HCM) and Iterative Self-Organizing Data Analysis Technique Algorithm (ISODATA). Experimental results on benchmark machine learning datasets show that the proposed method improves the classification performance efficiently.

Multi-Style License Plate Recognition System using K-Nearest Neighbors

  • Park, Soungsill;Yoon, Hyoseok;Park, Seho
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.5
    • /
    • pp.2509-2528
    • /
    • 2019
  • There are various styles of license plates for different countries and use cases that require style-specific methods. In this paper, we propose and illustrate a multi-style license plate recognition system. The proposed system performs a series of processes for license plate candidates detection, structure classification, character segmentation and character recognition, respectively. Specifically, we introduce a license plate structure classification process to identify its style that precedes character segmentation and recognition processes. We use a K-Nearest Neighbors algorithm with pre-training steps to recognize numbers and characters on multi-style license plates. To show feasibility of our multi-style license plate recognition system, we evaluate our system for multi-style license plates covering single line, double line, different backgrounds and character colors on Korean and the U.S. license plates. For the evaluation of Korean license plate recognition, we used a 50 minutes long input video that contains 138 vehicles of 6 different license plate styles, where each frame of the video is processed through a series of license plate recognition processes. From two experiments results, we show that various LP styles can be recognized under 50 ms processing time and with over 99% accuracy, and can be extended through additional learning and training steps.

Emotion Recognition Algorithm Based on Minimum Classification Error incorporating Multi-modal System (최소 분류 오차 기법과 멀티 모달 시스템을 이용한 감정 인식 알고리즘)

  • Lee, Kye-Hwan;Chang, Joon-Hyuk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.46 no.4
    • /
    • pp.76-81
    • /
    • 2009
  • We propose an effective emotion recognition algorithm based on the minimum classification error (MCE) incorporating multi-modal system The emotion recognition is performed based on a Gaussian mixture model (GMM) based on MCE method employing on log-likelihood. In particular, the reposed technique is based on the fusion of feature vectors based on voice signal and galvanic skin response (GSR) from the body sensor. The experimental results indicate that performance of the proposal approach based on MCE incorporating the multi-modal system outperforms the conventional approach.

A Study of Active Pulse Classification Algorithm using Multi-label Convolutional Neural Networks (다중 레이블 콘볼루션 신경회로망을 이용한 능동펄스 식별 알고리즘 연구)

  • Kim, Guenhwan;Lee, Seokjin;Lee, Kyunkyung;Lee, Donghwa
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.4
    • /
    • pp.29-38
    • /
    • 2020
  • In this research, we proposed the active pulse classification algorithm using multi-label convolutional neural networks for active sonar system. The proposed algorithm has the advantage of being able to acquire the information of the active pulse at a time, unlike the existing single label-based algorithm, which has several neural network structures, and also has an advantage of simplifying the learning process. In order to verify the proposed algorithm, the neural network was trained using sea experimental data. As a result of the analysis, it was confirmed that the proposed algorithm converged, and through the analysis of the confusion matrix, it was confirmed that it has excellent active pulse classification performance.

Particulate Distribution Map of Tidal Flat using Unsupervised Classification of Multi-Temporary Satellite Data (다중시기 위성영상의 무감독분류에 의한 갯벌의 입자 분포도)

  • 정종철
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.2
    • /
    • pp.71-79
    • /
    • 2002
  • This research presents particulate distribution map of tidal flats of Hampyung bay using reflectance which extracted from satellite data and field survey data during same periods. The spectrum of particulate composition obtained from Landsat TM data was analysed and 7 scenes of satellite image were classified with ISODATA and K-MEANS methods. The results of unsupervised classification were estimated with in-situ data. The classification accuracy of ISODATA and K-MAMS methods were 84.3% and 85.7%. For validation of classified results of multi-temporal satellite images, TM image of May 1999(reference data), which was classified with field survey data was compared with classified results of multi-temporary satellite data.

Classification and Restoration of Compositely Degraded Images using Deep Learning (딥러닝 기반의 복합 열화 영상 분류 및 복원 기법)

  • Yun, Jung Un;Nagahara, Hajime;Park, In Kyu
    • Journal of Broadcast Engineering
    • /
    • v.24 no.3
    • /
    • pp.430-439
    • /
    • 2019
  • The CNN (convolutional neural network) based single degradation restoration method shows outstanding performance yet is tailored on solving a specific degradation type. In this paper, we present an algorithm of multi-degradation classification and restoration. We utilize the CNN based algorithm for solving image degradation classification problem using pre-trained Inception-v3 network. In addition, we use the existing CNN based algorithms for solving particular image degradation problems. We identity the restoration order of multi-degraded images empirically and compare with the non-reference image quality assessment score based on CNN. We use the restoration order to implement the algorithm. The experimental results show that the proposed algorithm can solve multi-degradation problem.

Land Cover Classification of Multi-functional Administrative City for Hazard Mitigation Precaution (행정중심복합도시 재해경감대책을 위한 토지피복분류)

  • Han, Seung-Hee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.77-83
    • /
    • 2008
  • In this study, land cover classification and NDVI evaluation for hazard mitigation precaution are carried out in surrounding areas of Yeongi-gun, Chungcheongnam-do ($132\;km^2$) where a project for multi-functional administrative city is promoted by government. Image acquired from KOMPSAT 2, LANDSAT and ASTER is utilized and comparative evaluation on limitation in classification based on resolution was carried out. The area mainly consists of arable land including mountains, rice fields, ordinary fields, etc thus special attention was paid to the classification of rice fields and ordinary fields. For the classification of image acquired from KOMPSAT 2, segmentation technique for classification of high-resolution image was applied. To evaluate the accuracy of the classification, field investigation was conducted to examine the sample and it was compared with the land usage and classification of land category in land ledger of Korea. Acquired results were made into theme map in shape file format and it would be of great help in decision making of policy for the future-oriented development plan of multi-functional administrative city.

A Multibit Tree Bitmap based Packet Classification (멀티 비트 트리 비트맵 기반 패킷 분류)

  • 최병철;이정태
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3B
    • /
    • pp.339-348
    • /
    • 2004
  • Packet classification is an important factor to support various services such as QoS guarantee and VPN for users in Internet. Packet classification is a searching process for best matching rule on rule tables by employing multi-field such as source address, protocol, and port number as well as destination address in If header. In this paper, we propose hardware based packet classification algorithm by employing tree bitmap of multi-bit trio. We divided prefixes of searching fields and rule into multi-bit stride, and perform a rule searching with multi-bit of fixed size. The proposed scheme can reduce the access times taking for rule search by employing indexing key in a fixed size of upper bits of rule prefixes. We also employ a marker prefixes in order to remove backtracking during searching a rule. In this paper, we generate two dimensional random rule set of source address and destination address using routing tables provided by IPMA Project, and compare its memory usages and performance.

Multi-Tasking U-net Based Paprika Disease Diagnosis (Multi-Tasking U-net 기반 파프리카 병해충 진단)

  • Kim, Seo Jeong;Kim, Hyong Suk
    • Smart Media Journal
    • /
    • v.9 no.1
    • /
    • pp.16-22
    • /
    • 2020
  • In this study, a neural network method performing both Detection and Classification of diseases and insects in paprika is proposed with Multi-Tasking U-net. Paprika on farms does not have a wide variety of diseases in this study, only two classes such as powdery mildew and mite, which occur relatively frequently are made as the targets. Aiming to this, a U-net is used as a backbone network, and the last layers of the encoder and the decoder of the U-net are utilized for classification and segmentation, respectively. As the result, the encoder of the U-net is shared for both of detection and classification. The training data are composed of 680 normal leaves, 450 mite-damaged leaves, and 370 powdery mildews. The test data are 130 normal leaves, 100 mite-damaged leaves, and 90 powdery mildews. Its test results shows 89% of recognition accuracy.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.