• Title/Summary/Keyword: Multi Robot

Search Result 794, Processing Time 0.025 seconds

Wall Climbing Robot with Multi Joint Legs to Handle Obstacles (다관절을 이용한 장애물을 넘는 벽면 이동 로봇)

  • Lee, Hyun Ho;Yim, Young Min;Min, Tae Hyun;Kim, Sang Ha;Lee, Gwon Hong;Choi, Young Hwan;Lee, Hyun Ah
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2016.04a
    • /
    • pp.22-24
    • /
    • 2016
  • 대형 구조물을 관리하는 위험에 대처하기 위해 다양한 벽면 이동 로봇이 개발되고 있지만, 장애물이 있는 벽면에서 제한적인 문제가 있다. 본 논문에서는 이러한 문제를 해결하기 위한 벽면 이동로봇을 제안한다. 제안하는 로봇은 진공 모터를 부착한 6관절 다리를 네 개 사용하여, 부착을 위한 별도 장치없이 벽면에 안정적으로 흡착되어 벽면을 이동할 수 있다. 또한 카메라와 적외선센서를 이용하여 장애물을 인식하면 피하거나 건너갈 수 있다. 로봇은 각 다리를 제어하기 위한 4개의 MCU와 각 다리의 MCU를 제어하는 중앙 MCU로 구성된다. 중앙 MCU는 다리를 제어하는 MCU를 통합 관리하여 로봇 전체를 제어한다.

The Vision-based Autonomous Guided Vehicle Using a Virtual Photo-Sensor Array (VPSA) for a Port Automation (가상 포토센서 배열을 탑재한 항만 자동화 자을 주행 차량)

  • Kim, Soo-Yong;Park, Young-Su;Kim, Sang-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.2
    • /
    • pp.164-171
    • /
    • 2010
  • We have studied the port-automation system which is requested by the steep increment of cost and complexity for processing the freight. This paper will introduce a new algorithm for navigating and controlling the autonomous Guided Vehicle (AGV). The camera has the optical distortion in nature and is sensitive to the external ray, the weather, and the shadow, but it is very cheap and flexible to make and construct the automation system for the port. So we tried to apply to the AGV for detecting and tracking the lane using the CCD camera. In order to make the error stable and exact, this paper proposes new concept and algorithm for obtaining the error is generated by the Virtual Photo-Sensor Array (VPSA). VPSAs are implemented by programming and very easy to use for the various autonomous systems. Because the load of the computation is light, the AGV utilizes the maximal performance of the CCD camera and enables the CPU to take multi-tasks. We experimented on the proposed algorithm using the mobile robot and confirmed the stable and exact performance for tracking the lane.

A Practical Solution toward SLAM in Indoor environment Based on Visual Objects and Robust Sonar Features (가정환경을 위한 실용적인 SLAM 기법 개발 : 비전 센서와 초음파 센서의 통합)

  • Ahn, Sung-Hwan;Choi, Jin-Woo;Choi, Min-Yong;Chung, Wan-Kyun
    • The Journal of Korea Robotics Society
    • /
    • v.1 no.1
    • /
    • pp.25-35
    • /
    • 2006
  • Improving practicality of SLAM requires various sensors to be fused effectively in order to cope with uncertainty induced from both environment and sensors. In this case, combining sonar and vision sensors possesses numerous advantages of economical efficiency and complementary cooperation. Especially, it can remedy false data association and divergence problem of sonar sensors, and overcome low frequency SLAM update caused by computational burden and weakness in illumination changes of vision sensors. In this paper, we propose a SLAM method to join sonar sensors and stereo camera together. It consists of two schemes, extracting robust point and line features from sonar data and recognizing planar visual objects using multi-scale Harris corner detector and its SIFT descriptor from pre-constructed object database. And fusing sonar features and visual objects through EKF-SLAM can give correct data association via object recognition and high frequency update via sonar features. As a result, it can increase robustness and accuracy of SLAM in indoor environment. The performance of the proposed algorithm was verified by experiments in home -like environment.

  • PDF

Soft Robots Based on Magnetic Actuator (자성 액추에이터 기반의 소프트 로봇)

  • Nor, Gyu-Lyeong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.34 no.6
    • /
    • pp.401-415
    • /
    • 2021
  • Soft robots are promising devices for applications in drug delivery, sensing, and manufacturing. Traditional hard robotics are manufactured with rigid materials and their degrees of motion are constrained by the orientation of the joints. In contrast to rigid counterpart, soft robotics, employing soft and stretchable materials that easily deforms in shape, can realize complex motions (i.e., locomotion, swimming, and grappling) with a simple structure, and easily adapt to dynamic environment. Among them, the magnetic actuators exhibit unique characteristics such as rapid and accurate motion control, biocompatibility, and facile remote controllability, which make them promising candidates for the next-generation soft robots. Especially, the magnetic actuators instantly response to the stimuli, and show no-hysteresis during the recovery process, essential for continuous motion control. Here, we present the state-of-the-art fabrication process of magnetically controllable nano-/micro-composites, magnetically aligning process of the composites, and 1-dimensional/multi-dimensional multimodal motion control for the nextgeneration soft actuators.

A study on structural stability of Backgrinding equipment using finite element analysis (유한요소해석을 이용한 백그라인딩 장비의 구조안정성 연구)

  • Wi, Eun-Chan;Ko, Min-Sung;Kim, Hyun-Jeong;Kim, Sung-Chul;Lee, Joo-Hyung;Baek, Seung-Yub
    • Design & Manufacturing
    • /
    • v.14 no.4
    • /
    • pp.58-64
    • /
    • 2020
  • Lately, the development of the semiconductor industry has led to the miniaturization of electronic devices. Therefore, semiconductor wafers of very thin thickness that can be used in Multi-Chip Packages are required. There is active research on the backgrinding process to reduce the thickness of the wafer. The backgrinding process polishes the backside of the wafer, reducing the thickness of the wafer to tens of ㎛. The equipment that performs the backgrinding process requires ultra-precision. Currently, there is no full auto backgrinding equipment in Korea. Therefore, in this study, ultra-precision backgrinding equipment was designed. In addition, finite element analysis was conducted to verify the equipment design validity. The deflection and structural stability of the backgrinding equipment were analyzed using finite element analysis.

Mission Planning for Underwater Survey with Autonomous Marine Vehicles

  • Jang, Junwoo;Do, Haggi;Kim, Jinwhan
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • With the advancement of intelligent vehicles and unmanned systems, there is a growing interest in underwater surveys using autonomous marine vehicles (AMVs). This study presents an automated planning strategy for a long-term survey mission using a fleet of AMVs consisting of autonomous surface vehicles and autonomous underwater vehicles. Due to the complex nature of the mission, the actions of the vehicle must be of high-level abstraction, which means that the actions indicate not only motion of the vehicle but also symbols and semantics, such as those corresponding to deploy, charge, and survey. For automated planning, the planning domain definition language (PDDL) was employed to construct a mission planner for realizing a powerful and flexible planning system. Despite being able to handle abstract actions, such high-level planners have difficulty in efficiently optimizing numerical objectives such as obtaining the shortest route given multiple destinations. To alleviate this issue, a widely known technique in operations research was additionally employed, which limited the solution space so that the high-level planner could devise efficient plans. For a comprehensive evaluation of the proposed method, various PDDL-based planners with different parameter settings were implemented, and their performances were compared through simulation. The simulation result shows that the proposed method outperformed the baseline solutions by yielding plans that completed the missions more quickly, thereby demonstrating the efficacy of the proposed methodology.

Design of Multi-Step Authentication Method using Blockchain (특성화고등학교의 실습 수업을 위한 블록체인과 디지털 트윈 활용 학습 방안 : 덴소 6축 로봇을 중심으로)

  • Kim, Semin;Hong, Sunghyuck
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.511-513
    • /
    • 2021
  • In this study, digital twin technology and block chain technology are used to provide. A learning method was suggested. The medium used in this study is a 6-axis robot released by Denso, and the operating coordinates of the equipment can be converted into data through the data displayed on each axis. In addition, the results of the practice can be stored in the blockchain to ensure the confidentiality and integrity of the evaluation. The method proposed in this study is expected to be of great help to practical classes in specialized high schools even in the COVID-19 pandemic.

  • PDF

Development of a Multi-joint Robot system that enables adaptive driving of wheels and joints (주행 환경에 따라 바퀴와 관절 주행을 동적으로 변경하는 다관절 로봇 시스템 개발)

  • Sang-Eun Park;Min-Kyu Cho;Sung-Wook Park;Gun-A Lee;Seo-Hui Park
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.902-903
    • /
    • 2023
  • 장애물이나 경사지가 많은 협소 지역에서 탐사 활동을 수행하는 로봇은 험지에서도 이동할 수 있는 자율주행 방법을 필수적으로 제공해야 한다. 본 논문은 협소 지역에서 탐사와 객체 탐지를 위해 주행 상황에 따라 바퀴 주행과 관절 주행을 동적으로 변경하면서 이동하는 다관절 로봇 시스템을 제안한다. 다관절 로봇은 마찰력과 수직항력, 토크 값 등을 고려해 설계한 운동 모델을 기반으로 바퀴와 관절 이동을 변경하면서 자율적으로 주행한다. 관리자는 관제 서버를 통해 로봇이 수집한 탐사 정보를 실시간으로 확인하고 필요시 로봇의 원격제어를 수행할 수 있다. 본 연구를 통해 사람이 접근하기 어려운 협소 지역 탐사나 재난지역 인명구조 활동에 활용할 수 있기를 기대한다.

Route Optimization for Energy-Efficient Path Planning in Smart Factory Autonomous Mobile Robot (스마트 팩토리 모빌리티 에너지 효율을 위한 경로 최적화에 관한 연구)

  • Dong Hui Eom;Dong Wook Cho;Seong Ju Kim;Sang Hyeon Park;Sung Ho Hwang
    • Journal of Drive and Control
    • /
    • v.21 no.1
    • /
    • pp.46-52
    • /
    • 2024
  • The advancement of autonomous driving technology has heightened the importance of Autonomous Mobile Robotics (AMR) within smart factories. Notably, in tasks involving the transportation of heavy objects, the consideration of weight in route optimization and path planning has become crucial. There is ongoing research on local path planning, such as Dijkstra, A*, and RRT*, focusing on minimizing travel time and distance within smart factory warehouses. Additionally, there are ongoing simultaneous studies on route optimization, including TSP algorithms for various path explorations and on minimizing energy consumption in mobile robotics operations. However, previous studies have often overlooked the weight of the objects being transported, emphasizing only minimal travel time or distance. Therefore, this research proposes route planning that accounts for the maximum payload capacity of mobile robotics and offers load-optimized path planning for multi-destination transportation. Considering the load, a genetic algorithm with the objectives of minimizing both travel time and distance, as well as energy consumption is employed. This approach is expected to enhance the efficiency of mobility within smart factories.

A RFID-Based Cleaning Multi-Robot System in Indoor Environments (실내 환경에서 운용 가능한 RFID 기반 청소 멀티 로봇 시스템)

  • An, Sang-Sun;Shin, Sung-Oog;Lee, Jeong-Oog;Baik, Doo-Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.11a
    • /
    • pp.775-778
    • /
    • 2007
  • 로봇의 응용과 활용분야는 현 산업의 주요 이슈가 되고 있다. 현재 싱글로봇의 효율적인 운영을 넘어 넓은 공간에서 중복적인 공간 탐색을 최소화하기 위한 멀티 로봇 운영 기법은 중요한 연구 주제 중에 하나로 부각되고 있다. 멀티 로봇을 효율적으로 운영하기 위해서는 멀티 로봇 시스템의 각 싱글 로봇의 움직임을 파악하여 효율적으로 업무를 할당 할 수 있는 관리체계가 필요하다. 멀티 로봇의 업무 할당과 중복 탐색 최소화를 위해 본 논문에서는 중앙 서버와 RFID 시스템을 이용한 청소 멀티 로봇 운영 기법을 제안한다. 제안한 시스템은 로봇의 localization, navigation 및 mapping을 효율적으로 수행하기 위해 RFID를 활용하고 최적의 청소 공간 할당을 위하여 중앙 서버가 멀티 로봇을 효율적으로 관리한다. 청소 멀티 로봇 시스템에서는 싱글 로봇과 비교하여 효율적인 로봇의 운영을 보장할 뿐만 아니라 각 싱글 로봇의 상태와 주변 상태를 고려한 fault-tolerance를 제공함으로써 로봇 운영의 신뢰성을 보장할 수 있다.