• Title/Summary/Keyword: Multi Processing

Search Result 3,918, Processing Time 0.03 seconds

Interactive Interface Design Through VR Hand Tracking (VR 핸드트레킹을 통한 상호작용 인터페이스 설계)

  • Ju-Sang Lee;Hyo-Seung Lee;Woo-Jun Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.1
    • /
    • pp.213-218
    • /
    • 2023
  • In order to use the VR HMD, operation through separate controllers in both hands is required. Methods for text input in VR include a method of selecting virtual keyboard keys on the screen one by one using a controller, a method of inputting through a keyboard that is a resource of a computer by connecting a computer and VR, or a method of inputting through a keyboard that is a resource of a computer by purchasing a wireless keyboard in VR and wireless keyboard connection method. As such, the text input method in current VR equipment causes inconvenience and additional costs to users. For these reasons, most of the VR-related contents are limited to simple functions such as games or viewers, and there is a risk that VR equipment will be recognized as a simple game machine. Therefore, in this study, a multi-input interface using hand tracking provided by the Oculus Quest2 device is designed and partially implemented. Through this, it is expected that various tasks such as document work and business processing as well as games can be conveniently used using VR equipment.

HDR Video Reconstruction via Content-based Alignment Network (내용 기반의 정렬을 통한 HDR 동영상 생성 방법)

  • Haesoo Chung;Nam Ik Cho
    • Journal of Broadcast Engineering
    • /
    • v.28 no.2
    • /
    • pp.185-193
    • /
    • 2023
  • As many different over-the-top (OTT) services become ubiquitous, demands for high-quality content are increasing. However, high dynamic range (HDR) contents, which can provide more realistic scenes, are still insufficient. In this regard, we propose a new HDR video reconstruction technique using multi-exposure low dynamic range (LDR) videos. First, we align a reference and its neighboring frames to compensate for motions between them. In the alignment stage, we perform content-based alignment to improve accuracy, and we also present a high-resolution (HR) module to enhance details. Then, we merge the aligned features to generate a final HDR frame. Experimental results demonstrate that our method outperforms existing methods.

Reinforcement Learning-based Dynamic Weapon Assignment to Multi-Caliber Long-Range Artillery Attacks (다종 장사정포 공격에 대한 강화학습 기반의 동적 무기할당)

  • Hyeonho Kim;Jung Hun Kim;Joohoe Kong;Ji Hoon Kyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.42-52
    • /
    • 2022
  • North Korea continues to upgrade and display its long-range rocket launchers to emphasize its military strength. Recently Republic of Korea kicked off the development of anti-artillery interception system similar to Israel's "Iron Dome", designed to protect against North Korea's arsenal of long-range rockets. The system may not work smoothly without the function assigning interceptors to incoming various-caliber artillery rockets. We view the assignment task as a dynamic weapon target assignment (DWTA) problem. DWTA is a multistage decision process in which decision in a stage affects decision processes and its results in the subsequent stages. We represent the DWTA problem as a Markov decision process (MDP). Distance from Seoul to North Korea's multiple rocket launchers positioned near the border, limits the processing time of the model solver within only a few second. It is impossible to compute the exact optimal solution within the allowed time interval due to the curse of dimensionality inherently in MDP model of practical DWTA problem. We apply two reinforcement-based algorithms to get the approximate solution of the MDP model within the time limit. To check the quality of the approximate solution, we adopt Shoot-Shoot-Look(SSL) policy as a baseline. Simulation results showed that both algorithms provide better solution than the solution from the baseline strategy.

Porting gcc Based eCos OS and PROFINET Communication Stack to IAR (gcc 기반 eCos 운영체제 및 PROFINET 통신 스택의 IAR 포팅 방법)

  • Jin Ho Kim
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.4
    • /
    • pp.127-134
    • /
    • 2023
  • This paper describes how to port the eCos operating system and PROFINET communication stack developed based on gcc to the IAR compiler. The eCos operating system provides basic functions such as multi-thread, TCP/IP, and device driver for PROFINET operation, so there is no need to change it when developing PROFINET applications. Therefore, in this study, we reuse an eCos library built with gcc and it link with PROFINET communication stack that are ported to IAR complier. Due to the different of the gcc and IAR linker, symbol definitions and address of the constructors should be changed using the external tool that generates symbol definitions and address of the constructors from MAP file. In order to verify the proposed method, it was confirmed that the actual I/O was operating normally through PROFINET IRT communication by connecting to the Siemens PLC. IAR compiler has better performance in both the compile time and the size of the generated binary. The proposed method in this study is expected to help port various open sources as well as eCos and PROFINET communication stacks to other compilers.

Bit Register Based Algorithm for Thread Pool Management (스레드 풀 관리를 위한 비트 레지스터 기반 알고리즘)

  • Shin, Seung-Hyeok;Jeon, Jun-Cheol
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.7 no.2
    • /
    • pp.331-339
    • /
    • 2017
  • This paper proposes a thread pool management technique of an websocket server that is applicable to embedded systems. WebSocket is a proposed technique for consisting a dynamic web, and is constructed using HTML5 and jQuery. Various studies have been progressing to construct a dynamic web by Apache, Oracle and etc. Previous web service systems require high-capacity, high-performance hardware specifications and are not suitable for embedded systems. The node.js which is consist of HTML5 and jQuery is a typical websocket server which is made by open sources, and is a java script based web application which is composed of a single thread. The node.js has a limitation on the performance for processing a high velocity data on the embedded system. We make up a multi-thread based websoket server which can solve the mentioned problem. The thread pool is managed by a bit register and suitable for embedded systems. To evaluate the performance of the proposed algorithm, we uses JMeter that is a network test tool.

Soil moisture estimation of YongdamDam watershed using vegetation index from Sentinel-1 and -2 satellite images (Sentinel-1 및 Sentinel-2 위성영상기반 식생지수를 활용한 용담댐 유역의 토양수분 산정)

  • Son, Moobeen;Chung, Jeehun;Lee, Yonggwan;Woo, Soyoung;Kim, Seongjoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.161-161
    • /
    • 2021
  • 본 연구에서는 금강 상류의 용담댐 유역(930.0 km2)을 대상으로 Sentinel-1 SAR(Synthetic Aperture Radar) 및 Sentinel-2 MultiSpectral Instrument(MSI) 위성영상을 활용한 토양수분 산출연구를 수행하였다. 연구에 사용된 자료는 10 m 해상도의 Sentinel-1 IW(Interferometric Wide swath) mode GRD(Ground Range Detected) product의 VV(Vertical transmit-Vertical receive) 및 VH(Vertical transmit-Horizontal receive) 편파자료와 Sentinel-2 Level-2A Bottom of Atmosphere(BOA) reflectance 자료를 2019년에 대해 각 6일 및 5일 간격으로 구축하였다. 위성영상의 Image processing은 SNAP(SentiNel Application Platform)을 활용하여 Sentinel-1 영상의 편파 별(VV, VH) 후방산란계수와 Sentinel-2의 적색(Band-4) 및 근적외(Band-8) 영상을 생성하였다. 토양수분 산출 모형은 다중선형회귀모형(Multiple Linear Regression Model)을 활용하였으며, 각 지점에 해당하는 토양 속성별로 모형을 생성하였다. 모형의 입력자료는 Sentinel-1 위성의 편파별 후방산란계수, Sentinel-1 위성에서 산출된 식생지수 RVI(Radar Vegetation Index)와 Sentinel-2 위성에서 산출된 NDVI(Normalized Difference Vegetation Index)를 활용하여 식생의 영향을 반영하고자 하였다. 모의 된 토양수분을 검증하기 위해 6개 지점의 TDR(Time Domain Reflectometry) 기반 실측 토양수분 자료를 수집하고, 상관계수(Correlation Coefficient, R), 평균제곱근오차(Root Mean Square Error, RMSE) 및 IOA(Index of Agreement)를 활용하여 전체 기간 및 계절별로 나누어 검증할 예정이다.

  • PDF

A Study on the Failure Diagnosis of Transfer Robot for Semiconductor Automation Based on Machine Learning Algorithm (머신러닝 알고리즘 기반 반도체 자동화를 위한 이송로봇 고장진단에 대한 연구)

  • Kim, Mi Jin;Ko, Kwang In;Ku, Kyo Mun;Shim, Jae Hong;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.65-70
    • /
    • 2022
  • In manufacturing and semiconductor industries, transfer robots increase productivity through accurate and continuous work. Due to the nature of the semiconductor process, there are environments where humans cannot intervene to maintain internal temperature and humidity in a clean room. So, transport robots take responsibility over humans. In such an environment where the manpower of the process is cutting down, the lack of maintenance and management technology of the machine may adversely affect the production, and that's why it is necessary to develop a technology for the machine failure diagnosis system. Therefore, this paper tries to identify various causes of failure of transport robots that are widely used in semiconductor automation, and the Prognostics and Health Management (PHM) method is considered for determining and predicting the process of failures. The robot mainly fails in the driving unit due to long-term repetitive motion, and the core components of the driving unit are motors and gear reducer. A simulation drive unit was manufactured and tested around this component and then applied to 6-axis vertical multi-joint robots used in actual industrial sites. Vibration data was collected for each cause of failure of the robot, and then the collected data was processed through signal processing and frequency analysis. The processed data can determine the fault of the robot by utilizing machine learning algorithms such as SVM (Support Vector Machine) and KNN (K-Nearest Neighbor). As a result, the PHM environment was built based on machine learning algorithms using SVM and KNN, confirming that failure prediction was partially possible.

3D Reconstruction of 3D Printed Medical Metal Implants (3D 출력 의료용 금속 임플란트에 대한 3D 복원)

  • Byounghun Ye;Ku-Jin Kim
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.5
    • /
    • pp.229-236
    • /
    • 2023
  • Since 3D printed medical implant parts usually have surface defects, it is necessary to inspect the surface after manufacturing. In order to automate the surface inspection, it is effective to 3D scan the implant and reconstruct it as a scan model such as a point cloud. When constructing a scan model, the characteristics of the shape and material of the implant must be considered because it has characteristics different from those of general 3D printed parts. In this paper, we present a method to reconstruct the 3D scan model of a 3D printed metal bone-plate that is one kind of medical implant parts. Multiple partial scan data are produced by multi-view 3D scan, and then, we reconstruct a scan model by alignment and merging of partial data. We also present the process of the scan model reconstruction through experiments.

Task offloading scheme based on the DRL of Connected Home using MEC (MEC를 활용한 커넥티드 홈의 DRL 기반 태스크 오프로딩 기법)

  • Ducsun Lim;Kyu-Seek Sohn
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.61-67
    • /
    • 2023
  • The rise of 5G and the proliferation of smart devices have underscored the significance of multi-access edge computing (MEC). Amidst this trend, interest in effectively processing computation-intensive and latency-sensitive applications has increased. This study investigated a novel task offloading strategy considering the probabilistic MEC environment to address these challenges. Initially, we considered the frequency of dynamic task requests and the unstable conditions of wireless channels to propose a method for minimizing vehicle power consumption and latency. Subsequently, our research delved into a deep reinforcement learning (DRL) based offloading technique, offering a way to achieve equilibrium between local computation and offloading transmission power. We analyzed the power consumption and queuing latency of vehicles using the deep deterministic policy gradient (DDPG) and deep Q-network (DQN) techniques. Finally, we derived and validated the optimal performance enhancement strategy in a vehicle based MEC environment.

Autonomous Flight of a Drone that Adapts to Altitude Changes (고도 변화에 적응하는 드론의 자율 비행)

  • Jang-Won Kim
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.6
    • /
    • pp.448-453
    • /
    • 2023
  • As the production of small quadcopter drones has diversified and multi-sensors have been installed in FC due to the spread of MCU capable of high-speed processing, small drones that can perform special-purpose operations rather than simple operations have been realized. Hovering, attitude control, and position movement control were possible through the IMU in the FC mounted on the drone, but control is not easy when GPS connection and video communication are not possible in a closed building with a complex structure. In this study, when encountering an obstacle with a change in altitude in such a space, we proposed a method to overcome the obstacle and perform autonomous flight using optical flow and IR sensors using the Lucas-Kanade method. Through experiments, the drone's altitude flight on stairs that replace the complex structure of a closed space with stable hovering motion has a success rate of 98% within the tolerance of 10 [cm] due to external influences, and reliable autonomous flight up and down is achieved.