• 제목/요약/키워드: Multi Processing

Search Result 3,918, Processing Time 0.028 seconds

Performance Comparison of Task Partitioning Methods in MEC System (MEC 시스템에서 태스크 파티셔닝 기법의 성능 비교)

  • Moon, Sungwon;Lim, Yujin
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.5
    • /
    • pp.139-146
    • /
    • 2022
  • With the recent development of the Internet of Things (IoT) and the convergence of vehicles and IT technologies, high-performance applications such as autonomous driving are emerging, and multi-access edge computing (MEC) has attracted lots of attentions as next-generation technologies. In order to provide service to these computation-intensive tasks in low latency, many methods have been proposed to partition tasks so that they can be performed through cooperation of multiple MEC servers(MECSs). Conventional methods related to task partitioning have proposed methods for partitioning tasks on vehicles as mobile devices and offloading them to multiple MECSs, and methods for offloading them from vehicles to MECSs and then partitioning and migrating them to other MECSs. In this paper, the performance of task partitioning methods using offloading and migration is compared and analyzed in terms of service delay, blocking rate and energy consumption according to the method of selecting partitioning targets and the number of partitioning. As the number of partitioning increases, the performance of the service delay improves, but the performance of the blocking rate and energy consumption decreases.

Raw Spectrum Analysis of operated UHF-Wind Profiler Radar in South Korea (국내 운용 UHF-윈드프로파일러 레이더의 원시 스펙트럼 분석)

  • Lee, Kyung-Hun;Kwon, Byung-Hyuk;Kim, Yu-Jin;Lee, Geon-Myeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • In this paper raw spectrum data were analyzed to suggest the moving forward of performance evaluation and quality control of wind profilers of four manufacturers operating in South Korea. For the analysis, the profile of the spectrum averaged by season and the profile of four statistical values (minimum, average, median, and maximum) calculated by Power Spectrum Density (PSD) were used. The quality of spectrum data was the best for LAP-3000, followed by YKJ3, PCL-1300, and CLC-11-H. In Cheorwon and Chupungnyeong, where PCL-1300 was installed, the variability of the spectrum due to ground clutter and non-meteorological signals was large, so ground clutter removal and signal processing such as moving average and multi-peak were required. In Gunsan and Paju, where CLC-11-H was installed, DC (Direct Current) bias and propagation folding were found, so it is necessary to remove the DC bias and limit the effective altitude for observation.

Black Ice Formation Prediction Model Based on Public Data in Land, Infrastructure and Transport Domain (국토 교통 공공데이터 기반 블랙아이스 발생 구간 예측 모델)

  • Na, Jeong Ho;Yoon, Sung-Ho;Oh, Hyo-Jung
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.7
    • /
    • pp.257-262
    • /
    • 2021
  • Accidents caused by black ice occur frequently every winter, and the fatality rate is very high compared to other traffic accidents. Therefore, a systematic method is needed to predict the black ice formation before accidents. In this paper, we proposed a black ice prediction model based on heterogenous and multi-type data. To this end, 12,574,630 cases of 46 types of land, infrastructure, transport public data and meteorological public data were collected. Subsequently, the data cleansing process including missing value detection and normalization was followed by the establishment of approximately 600,000 refined datasets. We analyzed the correlation of 42 factors collected to predict the occurrence of black ice by selecting only 21 factors that have a valid effect on black ice prediction. The prediction model developed through this will eventually be used to derive the route-specific black ice risk index, which will be utilized as a preliminary study for black ice warning alart services.

A generalized adaptive variational mode decomposition method for nonstationary signals with mode overlapped components

  • Liu, Jing-Liang;Qiu, Fu-Lian;Lin, Zhi-Ping;Li, Yu-Zu;Liao, Fei-Yu
    • Smart Structures and Systems
    • /
    • v.30 no.1
    • /
    • pp.75-88
    • /
    • 2022
  • Engineering structures in operation essentially belong to time-varying or nonlinear structures and the resultant response signals are usually non-stationary. For such time-varying structures, it is of great importance to extract time-dependent dynamic parameters from non-stationary response signals, which benefits structural health monitoring, safety assessment and vibration control. However, various traditional signal processing methods are unable to extract the embedded meaningful information. As a newly developed technique, variational mode decomposition (VMD) shows its superiority on signal decomposition, however, it still suffers two main problems. The foremost problem is that the number of modal components is required to be defined in advance. Another problem needs to be addressed is that VMD cannot effectively separate non-stationary signals composed of closely spaced or overlapped modes. As such, a new method named generalized adaptive variational modal decomposition (GAVMD) is proposed. In this new method, the number of component signals is adaptively estimated by an index of mean frequency, while the generalized demodulation algorithm is introduced to yield a generalized VMD that can decompose mode overlapped signals successfully. After that, synchrosqueezing wavelet transform (SWT) is applied to extract instantaneous frequencies (IFs) of the decomposed mono-component signals. To verify the validity and accuracy of the proposed method, three numerical examples and a steel cable with time-varying tension force are investigated. The results demonstrate that the proposed GAVMD method can decompose the multi-component signal with overlapped modes well and its combination with SWT enables a successful IF extraction of each individual component.

Evaluation of the Absorbing Performance of Radar-absorbing Structure with Periodic Pattern after the Low-velocity Impact (주기패턴 레이더 흡수 구조의 저속충격 후 흡수 성능 평가)

  • Joon-Hyung, Shin;Byeong-Su, Kwak
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.469-476
    • /
    • 2022
  • In this paper, the microwave absorbing characteristics after the impact of the radar-absorbing structure (RAS) consisting of periodic pattern sheet (PPS) and glass fiber-reinforced plastic (GFRP) were experimentally investigated. The fabricated RAS effectively absorbed the microwave in the X-band (8.2-12.4 GHz). In order to induce the damage to the RAS, a low-velocity impact test with various impact energy of 15, 40, and 60 J was conducted. Afterward, the impact damage was observed by using visual inspection, non-destructive test, and image processing method. Moreover, the absorbing performance of intact and damaged RAS was measured by the free-space measurement system. The experiment results revealed that the delamination damage from the impact energy of 15 J did not considerably affect the microwave absorbing performance of the RAS. However, fiber breakage and penetration damage with a relatively large damaged area were occuured when the impact energy was increased up to 40 J and 60 J, and these failures significantly degraded the microwave absorbing characteristics of the RAS.

Analysis and Advice on Cache Algorithms of SSD FTL (SSD FTL 캐시 알고리즘 분석 및 제언)

  • Hyung Bong, Lee;Tae Yun, Chung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.12 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • It is impossible to overwrite on an already allocated page in SSDs, so whenever a write operation occurs a page replacement with a clean page is required. To resolve this problem, SSDs have an internal flash translation layer called FTL that maps logical pages managed by a file system of operating system to currently allocated physical pages. SSD pages discarded due to write operations must be recycled through initialization, but since the number of initialization times is limited the FTL provides a caching function to reduce the number of writes in addition to the page mapping function, which is a core function. In this study, we focus on the FTL cache methodologies reducing the number of page writes and analyze the related algorithms, and propose a write-only cache strategy. As a result of experimenting with the write-only cache using a simulator, it showed an improvement of up to 29%.

Improved Transformer Model for Multimodal Fashion Recommendation Conversation System (멀티모달 패션 추천 대화 시스템을 위한 개선된 트랜스포머 모델)

  • Park, Yeong Joon;Jo, Byeong Cheol;Lee, Kyoung Uk;Kim, Kyung Sun
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.138-147
    • /
    • 2022
  • Recently, chatbots have been applied in various fields and have shown good results, and many attempts to use chatbots in shopping mall product recommendation services are being conducted on e-commerce platforms. In this paper, for a conversation system that recommends a fashion that a user wants based on conversation between the user and the system and fashion image information, a transformer model that is currently performing well in various AI fields such as natural language processing, voice recognition, and image recognition. We propose a multimodal-based improved transformer model that is improved to increase the accuracy of recommendation by using dialogue (text) and fashion (image) information together for data preprocessing and data representation. We also propose a method to improve accuracy through data improvement by analyzing the data. The proposed system has a recommendation accuracy score of 0.6563 WKT (Weighted Kendall's tau), which significantly improved the existing system's 0.3372 WKT by 0.3191 WKT or more.

Efficient Forest Fire Detection using Rule-Based Multi-color Space and Correlation Coefficient for Application in Unmanned Aerial Vehicles

  • Anh, Nguyen Duc;Van Thanh, Pham;Lap, Doan Tu;Khai, Nguyen Tuan;Van An, Tran;Tan, Tran Duc;An, Nguyen Huu;Dinh, Dang Nhu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.2
    • /
    • pp.381-404
    • /
    • 2022
  • Forest fires inflict great losses of human lives and serious damages to ecological systems. Hence, numerous fire detection methods have been proposed, one of which is fire detection based on sensors. However, these methods reveal several limitations when applied in large spaces like forests such as high cost, high level of false alarm, limited battery capacity, and other problems. In this research, we propose a novel forest fire detection method based on image processing and correlation coefficient. Firstly, two fire detection conditions are applied in RGB color space to distinguish between fire pixels and the background. Secondly, the image is converted from RGB to YCbCr color space with two fire detection conditions being applied in this color space. Finally, the correlation coefficient is used to distinguish between fires and objects with fire-like colors. Our proposed algorithm is tested and evaluated on eleven fire and non-fire videos collected from the internet and achieves up to 95.87% and 97.89% of F-score and accuracy respectively in performance evaluation.

CNN based data anomaly detection using multi-channel imagery for structural health monitoring

  • Shajihan, Shaik Althaf V.;Wang, Shuo;Zhai, Guanghao;Spencer, Billie F. Jr.
    • Smart Structures and Systems
    • /
    • v.29 no.1
    • /
    • pp.181-193
    • /
    • 2022
  • Data-driven structural health monitoring (SHM) of civil infrastructure can be used to continuously assess the state of a structure, allowing preemptive safety measures to be carried out. Long-term monitoring of large-scale civil infrastructure often involves data-collection using a network of numerous sensors of various types. Malfunctioning sensors in the network are common, which can disrupt the condition assessment and even lead to false-negative indications of damage. The overwhelming size of the data collected renders manual approaches to ensure data quality intractable. The task of detecting and classifying an anomaly in the raw data is non-trivial. We propose an approach to automate this task, improving upon the previously developed technique of image-based pre-processing on one-dimensional (1D) data by enriching the features of the neural network input data with multiple channels. In particular, feature engineering is employed to convert the measured time histories into a 3-channel image comprised of (i) the time history, (ii) the spectrogram, and (iii) the probability density function representation of the signal. To demonstrate this approach, a CNN model is designed and trained on a dataset consisting of acceleration records of sensors installed on a long-span bridge, with the goal of fault detection and classification. The effect of imbalance in anomaly patterns observed is studied to better account for unseen test cases. The proposed framework achieves high overall accuracy and recall even when tested on an unseen dataset that is much larger than the samples used for training, offering a viable solution for implementation on full-scale structures where limited labeled-training data is available.

Cancer Patient Specific Driver Gene Identification by Personalized Gene Network and PageRank (개인별 유전자 네트워크 구축 및 페이지랭크를 이용한 환자 특이적 암 유발 유전자 탐색 방법)

  • Jung, Hee Won;Park, Ji Woo;Ahn, Jae Gyoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.12
    • /
    • pp.547-554
    • /
    • 2021
  • Cancer patients can have different kinds of cancer driver genes, and identification of these patient-specific cancer driver genes is an important step in the development of personalized cancer treatment and drug development. Several bioinformatic methods have been proposed for this purpose, but there is room for improvement in terms of accuracy. In this paper, we propose NPD (Network based Patient-specific Driver gene identification) for identifying patient-specific cancer driver genes. NPD consists of three steps, constructing a patient-specific gene network, applying the modified PageRank algorithm to assign scores to genes, and identifying cancer driver genes through a score comparison method. We applied NPD on six cancer types of TCGA data, and found that NPD showed generally higher F1 score compared to existing patient-specific cancer driver gene identification methods.