• Title/Summary/Keyword: Multi Object Detection

Search Result 236, Processing Time 0.025 seconds

Multi-type object detection-based de-identification technique for personal information protection (개인정보보호를 위한 다중 유형 객체 탐지 기반 비식별화 기법)

  • Ye-Seul Kil;Hyo-Jin Lee;Jung-Hwa Ryu;Il-Gu Lee
    • Convergence Security Journal
    • /
    • v.22 no.5
    • /
    • pp.11-20
    • /
    • 2022
  • As the Internet and web technology develop around mobile devices, image data contains various types of sensitive information such as people, text, and space. In addition to these characteristics, as the use of SNS increases, the amount of damage caused by exposure and abuse of personal information online is increasing. However, research on de-identification technology based on multi-type object detection for personal information protection is insufficient. Therefore, this paper proposes an artificial intelligence model that detects and de-identifies multiple types of objects using existing single-type object detection models in parallel. Through cutmix, an image in which person and text objects exist together are created and composed of training data, and detection and de-identification of objects with different characteristics of person and text was performed. The proposed model achieves a precision of 0.724 and mAP@.5 of 0.745 when two objects are present at the same time. In addition, after de-identification, mAP@.5 was 0.224 for all objects, showing a decrease of 0.4 or more.

AANet: Adjacency auxiliary network for salient object detection

  • Li, Xialu;Cui, Ziguan;Gan, Zongliang;Tang, Guijin;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.10
    • /
    • pp.3729-3749
    • /
    • 2021
  • At present, deep convolution network-based salient object detection (SOD) has achieved impressive performance. However, it is still a challenging problem to make full use of the multi-scale information of the extracted features and which appropriate feature fusion method is adopted to process feature mapping. In this paper, we propose a new adjacency auxiliary network (AANet) based on multi-scale feature fusion for SOD. Firstly, we design the parallel connection feature enhancement module (PFEM) for each layer of feature extraction, which improves the feature density by connecting different dilated convolution branches in parallel, and add channel attention flow to fully extract the context information of features. Then the adjacent layer features with close degree of abstraction but different characteristic properties are fused through the adjacent auxiliary module (AAM) to eliminate the ambiguity and noise of the features. Besides, in order to refine the features effectively to get more accurate object boundaries, we design adjacency decoder (AAM_D) based on adjacency auxiliary module (AAM), which concatenates the features of adjacent layers, extracts their spatial attention, and then combines them with the output of AAM. The outputs of AAM_D features with semantic information and spatial detail obtained from each feature are used as salient prediction maps for multi-level feature joint supervising. Experiment results on six benchmark SOD datasets demonstrate that the proposed method outperforms similar previous methods.

An Implementation of Noise-Tolerant Context-free Attention Operator and its Application to Efficient Multi-Object Detection (잡음에 강건한 주목 연산자의 구현과 효과적인 다중 물체 검출)

  • Park, Chang-Jun;Jo, Sang-Hyeon;Choe, Heung-Mun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.1
    • /
    • pp.89-96
    • /
    • 2001
  • In this paper, a noise-tolerant generalized symmetry transform(NTGST) is proposed and implemented as a context-free attention operator for efficient detection of multi-object. In contrast to the conventional context-free attention operator based on the GST in which only the magnitude and the symmetry of the pixel pairs are taken into account, the proposed NTGST additionally takes into account the convergence and the divergence of the radial orientation of the intensity gradient of the pixel pair. Thus, the proposed attention operator can easily detect multiple objects out of the noisy and complex backgrounded image. Experiments are conducted on various synthetic and real images, and the proposed NTGST is proved to be effective in multi-object detection from the noisy and complex backgrounds.

  • PDF

The Application of Dyadic Wavelet In the RS Image Edge Detection

  • Qiming, Qin;Wenjun, Wang;Sijin, Chen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1268-1271
    • /
    • 2003
  • In the edge detection of RS image, the useful detail losing and the spurious edge often appear. To solve the problem, we use the dyadic wavelet to detect the edge of surface features by combining the edge detecting with the multi-resolution analyzing of the wavelet transform. Via the dyadic wavelet decomposing, we obtain the RS image of a certain appropriate scale, and figure out the edge data of the plane and the upright directions respectively, then work out the grads vector module of the surface features, at last by tracing them we get the edge data of the object therefore build the RS image which obtains the checked edge. This method can depress the effect of noise and examine exactly the edge data of the object by rule and line. With an experiment of a RS image which obtains an airport, we certificate the feasibility of the application of dyadic wavelet in the object edge detection.

  • PDF

Unveiling the Unseen: A Review on current trends in Open-World Object Detection (오픈 월드 객체 감지의 현재 트렌드에 대한 리뷰)

  • MUHAMMAD ALI IQBAL;Soo Kyun Kim
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.335-337
    • /
    • 2024
  • This paper presents a new open-world object detection method emphasizing uncertainty representation in machine learning models. The focus is on adapting to real-world uncertainties, incrementally updating the model's knowledge repository for dynamic scenarios. Applications like autonomous vehicles benefit from improved multi-class classification accuracy. The paper reviews challenges in existing methodologies, stressing the need for universal detectors capable of handling unknown classes. Future directions propose collaboration, integration of language models, to improve the adaptability and applicability of open-world object detection.

  • PDF

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

Multi Modal Sensor Training Dataset for the Robust Object Detection and Tracking in Outdoor Surveillance (MMO (Multi Modal Outdoor) Dataset) (실외 경비 환경에서 강인한 객체 검출 및 추적을 위한 실외 멀티 모달 센서 기반 학습용 데이터베이스 구축)

  • Noh, DongKi;Yang, Wonkeun;Uhm, Teayoung;Lee, Jaekwang;Kim, Hyoung-Rock;Baek, SeungMin
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.8
    • /
    • pp.1006-1018
    • /
    • 2020
  • Dataset is getting more import to develop a learning based algorithm. Quality of the algorithm definitely depends on dataset. So we introduce new dataset over 200 thousands images which are fully labeled multi modal sensor data. Proposed dataset was designed and constructed for researchers who want to develop detection, tracking, and action classification in outdoor environment for surveillance scenarios. The dataset includes various images and multi modal sensor data under different weather and lighting condition. Therefor, we hope it will be very helpful to develop more robust algorithm for systems equipped with difference kinds of sensors in outdoor application. Case studies with the proposed dataset are also discussed in this paper.

A New Hybrid Algorithm for Invariance and Improved Classification Performance in Image Recognition

  • Shi, Rui-Xia;Jeong, Dong-Gyu
    • International journal of advanced smart convergence
    • /
    • v.9 no.3
    • /
    • pp.85-96
    • /
    • 2020
  • It is important to extract salient object image and to solve the invariance problem for image recognition. In this paper we propose a new hybrid algorithm for invariance and improved classification performance in image recognition, whose algorithm is combined by FT(Frequency-tuned Salient Region Detection) algorithm, Guided filter, Zernike moments, and a simple artificial neural network (Multi-layer Perceptron). The conventional FT algorithm is used to extract initial salient object image, the guided filtering to preserve edge details, Zernike moments to solve invariance problem, and a classification to recognize the extracted image. For guided filtering, guided filter is used, and Multi-layer Perceptron which is a simple artificial neural networks is introduced for classification. Experimental results show that this algorithm can achieve a superior performance in the process of extracting salient object image and invariant moment feature. And the results show that the algorithm can also classifies the extracted object image with improved recognition rate.

A New Feature-Based Visual SLAM Using Multi-Channel Dynamic Object Estimation (다중 채널 동적 객체 정보 추정을 통한 특징점 기반 Visual SLAM)

  • Geunhyeong Park;HyungGi Jo
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.19 no.1
    • /
    • pp.65-71
    • /
    • 2024
  • An indirect visual SLAM takes raw image data and exploits geometric information such as key-points and line edges. Due to various environmental changes, SLAM performance may decrease. The main problem is caused by dynamic objects especially in highly crowded environments. In this paper, we propose a robust feature-based visual SLAM, building on ORB-SLAM, via multi-channel dynamic objects estimation. An optical flow and deep learning-based object detection algorithm each estimate different types of dynamic object information. Proposed method incorporates two dynamic object information and creates multi-channel dynamic masks. In this method, information on actually moving dynamic objects and potential dynamic objects can be obtained. Finally, dynamic objects included in the masks are removed in feature extraction part. As a results, proposed method can obtain more precise camera poses. The superiority of our ORB-SLAM was verified to compared with conventional ORB-SLAM by the experiment using KITTI odometry dataset.

Implementation of a DI Multi-Touch Display Using an Improved Touch-Points Detection and Gesture Recognition (개선된 터치점 검출과 제스쳐 인식에 의한 DI 멀티터치 디스플레이 구현)

  • Lee, Woo-Beom
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.11 no.1
    • /
    • pp.13-18
    • /
    • 2010
  • Most of the research in the multi-touch area is based on the FTIR(Frustrated Total Internal Re리ection), which is just implemented by using the previous approach. Moreover, there are not the software solutions to improve a performance in the multi touch-blobs detection or the user gesture recognition. Therefore, we implement a multi-touch table-top display that is based on the DI(Diffused Illumination), the improved touch-points detection and user gesture recognition. The proposed method supports a simultaneous transformation multi-touch command for objects in the running application. Also, the system latency time is reduced by the proposed ore-testing method in the multi touch-blobs detection processing. Implemented device is simulated by programming the Flash AS3 application in the TUIO(Tangible User Interface Object) environment that is based on the OSC(Open Sound Control) protocol. As a result, Our system shows the 37% system latency reduction, and is successful in the multi-touch gestures recognition.