• 제목/요약/키워드: Multi Nozzle

검색결과 201건 처리시간 0.027초

핀-핀 형 전극의 전기-수력학 프린팅에서 전극 직경이 미세 세라믹 패턴 형성에 미치는 영향 (Effect of Electrode Diameter on Pine Ceramic Pattern Formed by Using Pin-To-Pin Type Electro-Hydrodynamic Printing)

  • 이대영;유재훈;류태우;황정호;김용준
    • 정보저장시스템학회논문집
    • /
    • 제1권1호
    • /
    • pp.108-114
    • /
    • 2005
  • The generation of fine relics of suspensions is a significant interest as it holds the key to the fabrication of electronic devices. These processes offer opportunities for miniaturization of multilayer circuits, for production of functionally graded materials, ordered composites and far small complex-shaped components. Some novel printing methods of depositing ceramic and metal droplets were suggested in recent years. In an electro-hydrodynamic printing, the metallic capillary nozzle can be raised to several kilovolts with respect to the infinite ground plate or pin-type electrode positioned a few millimeters from the nozzle tip. Depending on the electrical and physical properties of the liquid, for a given geometry, it Is possible to generate droplets in any one of three modes, dripping, cone-jet and multi-jet. In this experiment, an alumina suspension flowing through a nozzle was subjected to electro-hydrodynamic printing using pin-type electrodes in the cone-jet mode at different applied voltages. The pin-type electrodes of 1, 100, 1000${\mu}m$ in diameter were used to form fine ceramic patterns onto the substrates. Various feature sizes with applied voltages and electrode diameters were measured. The feature sizes increased with the electrode diameter and applied voltages. The feature size was as fine as $30 {\mu}m$.

  • PDF

초음파 직물수세기의 구성 및 구동 특성 (Assemblage and Driving Characteristics of a Ultrasonic Fabric Washing Machine)

  • 이춘길;이광수
    • 한국염색가공학회지
    • /
    • 제12권3호
    • /
    • pp.207-217
    • /
    • 2000
  • A new, high-efficiency ultrasonic fabric washing machine was developed to be an energy-efficient washing machine and to enhance fabric washing quality in washing processes of the dyeing and finishing process in the textile industry. This system is composed of ultrasonic wave generator, air blowing nozzle, torque motor for fabric tension control, and enclosed washing bath, multi-tube type exchanger, noiseless heater, air cylinder, expander roller, mangle upper and lower rollers, bend bar, dancer, shower spray nozzle, and solenoid valve, and so on. These elements are synergised for fabric washing. One of the very important principles is the low tension fabric running system. For an efficient washing effect, a counter flow system is also adopted. The new system also adopts the dancer and torque motor to control fabric tension and prevent fabric creasing. Shower spray nozzle, counter flow and overflow apparatus, and air-blowing apparatus are adopted to enhance the fabric washing effect. In this study, peach yoryu, exter, and moss crepe fabrics were washed by the general and ultrasonic washing systems under different conditions respectively. The washing efficiency was affected by the fabric running speed and characteristics of fabrics. Size content after washing increased with increasing the fabric running speed. The values in the general washing system were higher than those of the ultrasonic washing system. The changes of conductivity in the ultrasonic and the cooling bath were affected by the running time under the ultrasonic generating. The values of conductivity decreased as the experimental time passed.

  • PDF

VCO노즐에서 고압으로 분사되는 디젤분무의 특성 (Diesel Spray Developement from VCO nozzles for High Pressure Direct-Injection)

  • 강진석;배충식
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.28-36
    • /
    • 2000
  • Spray characteristics of diesel fuel injection is one of the most important factors in diesel combustion and pollutant emissions especially in HSDI (High Speed Direct Injection) diesel engines where the interval between the onset of combustion and the evaporation of atomized fuel is relatively short, An investigation into various spray characteristics from different holes of VCO(Valve Covered Orifice) nozzles was performed and its results were compared to standard sac nozzle. The global characteristics of spray, including spray angle, spray tip penetration, and spray pattern were measured from the spray images which were frozen by an instantaneous photography with a spark light source. For better understanding of spray behavior, SMD of the fuel sprays from multi hole nozzles were measured with back light imaging while the sprays from the other holes are covered by a purpose-built nozzle cap. The investigation manifestly reveals the different spray patterns at the beginning of injection produced by VCO nozzles can be identified as three distinct types with their own macroscopic and microscopic characteristics, while macroscopic non-uniformity disappears at 0.9∼1.0ms from the start of injection.

  • PDF

다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구 (An Experimental Study on the NOx Formation of LNG Flame in Fuel Staged Combustor)

  • 정진도;한지웅;안국영
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.389-394
    • /
    • 2004
  • An experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is a act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel bums. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as a primary and secondary fuels. This study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

A Hydraulic and Feasibility Study of New Tower Internal in Gas Processing Plants

  • Choo Chang-upp
    • International Journal of Safety
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 2004
  • A new tower internal, which is called CSE, is presented. The CSE is composed of a nozzle perforated in its bottom along the entire periphery and equipped with a multi vane axial swirler at the inlet and hollow cylindrical separator at the outlet of the nozzle. According to the experimental work for obtaining the necessary hydraulic information of the CSE, which is used for preliminary design of a separation column, the CSE showed a stable operation over the wide rage of gas/liquid ratio. However, it caused large pressure drop due to the high gas velocity which should carry liquid droplets through the element. The high pressure drop may cause problems in energy recovery and the application of the CSE can be limited to the high pressure columns. Assuming that the tray efficiency of the CSE is the same with the existing separation columns, the results of the column design showed the size reduction of the column diameters by 30 to $40\%$ and investment cost saving, depending on operating conditions. The application of the CSE to separation column may also contribute to the de-bottlenecking the existing column.

압착에 따른 원환체 형상의 두꺼운 직물 복합재 내부의 잔류응력 (Residual Stresses in Thick Fabric Composite Rings with Respect to Compaction)

  • 김종운;김형근;이대길
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2004년도 추계학술발표대회 논문집
    • /
    • pp.139-142
    • /
    • 2004
  • The fabric composite rings for nozzle parts of solid rocket motors should be thick to endure high temperature and pressure of combustion gas. Since the thermal residual stresses developed during manufacturing of the axi-symmetric composite structures increase as the thickness increases and eventually induce failures during storage and operation, the estimation of the residual stresses is indispensable for design and manufacture of the thick composite nozzle parts. In this paper, thick fabric rings made of carbon fabric phenolic composites were fabricated in a hydroclave and in an autoclave using a multi-step pre-compaction process to minimize draping. The residual stresses distributed in the rings were measured by the radial-cut method and it was found that the compaction reduces the residual stresses in the composite ring.

  • PDF

다단 연소기를 이용한 LNG 화염의 NOx 발생에 관한 실험적 연구 (An Experimental study on the NOx Formation of LNG Flame in Fuel Staged Combustor)

  • 한지웅;안국영;김한석;정진도;박경진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 추계학술대회논문집B
    • /
    • pp.161-166
    • /
    • 2001
  • An Experimental study on the NOx formation of LNG flame in fuel staged combustor has been studied. The design concept of multi fuel/air staged combustor is creation of two separate flame, a primary flame is act as a pilot flame for the secondary combustion stage combustion zone, where most of fuel burns. Experiments were performed on a semi-industrial scale (thermal input 0.233 MW) in a laboratory furnace and Liquefied Natural Gas(LNG) was used as primary and secondary fuels. The study included parametric study to identify the optimum operating conditions which are primary/secondary fuel ratio, and primary/secondary air ratio for reducing NOx emission with two types of nozzle. The test demonstrated that NOx emission can be reduced by >70% in accordance with operating conditions.

  • PDF

평판에 충돌하는 음속/초음속 제트유동에 관한 연구 (Study on Sonic/Supersonic Impinging Jets on a Flat Pate)

  • 김희동;이호준;서태원;금기헌
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 1998년도 제10회 학술강연회논문집
    • /
    • pp.15-15
    • /
    • 1998
  • The problem of the impingement of a sonic or a supersonic jet on a flat surface has not only wide applications but has also interesting and very complex flow phenomena. The main applications of this impinging jet include prediction of solid surface erosion, design of launcher systems, stage separation of multi-stage rocket system, V/STOL operations, thermal spray system, and manufacturing technologies of materials. Much have been learned about the supersonic impinging jet flow field but many fundamental questions have not been answered satisfactorily. The problem encompasses many facets of fluid dynamics which, in combination, present the compressibility effect and the viscous-inviscid interaction, coupled with flow separation and reattachment. What is more, there are many flow parameters that have on the impinging jet flow field, for example, Mach number, Reynolds number, pressure ratio, distance between the nozzle exit and flat plate, jet shock structure, nozzle diameter and etc. Thus the existing data on the supersonic impinging jet flow present considerable disagreement in which quantitative comparison between one result and another is often impossible.

  • PDF

극저온 $CO_2$를 이용한 세정장치 개발

  • 윤철남
    • 발명특허
    • /
    • 제26권10호통권306호
    • /
    • pp.76-83
    • /
    • 2001
  • 본 발명은 승화성 고체 미립자 제트를 이용한 분사로 표면의 오염물을 제거하는 공정이다. 이는 극저온에서 고화된 입자가 표면에 고속 충돌 후 오염물을 제거하고 자신은 승화되어 잔사를 남기지 않는 청정 세척 공정을 말하는데 반도체 장비, 정밀 제품, 인쇄회로 기판 등의 다양한 표면의 각종 오염막 제거에 널리 사용될 수 있다. 본 장치의 특징은 세정 매체인 $CO_2$와 Carrier gas인 $N_2$를 사용하였고 현재 특허에 출원되어 있는 단순한 액체$CO_2$를 이용한 세정범위를 넘어 다양한 세정매체 즉, 복합인자($CO_2$ + ice, Ar + ice)를 이용하여 세정효율의 다변화를 이루었고 자체 개발한 냉동기를 이용하여 고화율이 액체 $CO_2$보다 상대적으로 낮은 기체 $CO_2$의 고화율을 증대 시킴으로써, 세정매체의 소모시간이 현격히 감소되어 원가절감 효과를 증대 시켰다. 세정대상물을 효과적으로 제거하기 위해 주 세정 매체인 $CO_2$의 수농도를 조절할 수 있는 Multi-Nozzle의 개발과 이로 인하여 세정력의 강도를 조절하도록 하였다. 세정 후 발생되는 오염입자를 효과적으로 제거하도록 국부 Exhaust를 Nozzle전단에 달아 재 오염의 방지효과를 극대화 시켰다.

  • PDF

Modified Gas-jet Boosted Radio-frequency Glow Discharge 셀의 개발 및 최적화에 관한 연구 (Study for Conductive and Non-conductive Multi-layers Depth Profiling Analysis of Radio Frequency Gas-jet Boosted Glow Discharge Spectrometry)

  • 조원보;스튜어드 보든;정종필;강원규;김규환;김효진
    • 분석과학
    • /
    • 제15권2호
    • /
    • pp.108-114
    • /
    • 2002
  • 고체 시료를 직접 분석하기 위하여 글로우 방전 원자 방출법을 이용한 새로운 장치를 개발하였다. 이 시스템은 기존의 gas-jet boosted nozzle을 개선한 새로운 방전 셀과 Radio-frequency 전원장치를 사용하였다. 기존의 gas-jet boosted nozzle의 경우 재침전이 적고, 시료 손실량이 많아서 낮은 방전 전력에서 저 합금강의 미량 분석에 적합하였다. 하지만 높은 방전 전력을 사용할 경우 시료 손실량이 많아지고, 재석출(redeposition)이 증가함으로 해서 플라스마가 불안정해지는 단점을 지니고 있었다. 기존의 글로우 방전 셀의 경우 방전 전력을 높일 수록 플라스마의 들뜸 온도가 증가하는 경향을 가진다. 이 때문에 높은 방전 전력에서는 플라스마의 온도가 높아져서 극미량 분석이 가능할 수 있지만, 기존의 노즐 부분에 문제점으로 인해 높은 방전 전력으로 분석하기에는 부적합하였다. 이러한 문제점을 modified gas-jet boosted nozzle은 시료 손실량이 같은 방전 전력에서 기존의 가스 제트 흐름노즐에 비하여 감소하지만 높은 방전 전력에서는 플라스마 안정도가 증가하여 극미량 분석이 가능하도록 개선하였다. 본 시스템은 여러 가지 방전에 미치는 실험 변수인 압력과 가스 흐름량 그리고 방전 전력의 변화에 따른 시료 손실 속도와 방출 세기 등의 변화를 측정하여 최적화 하였으며, 표준 시료 Fe합금을 이용하여서 미량 분석을 하였다.