• 제목/요약/키워드: Multi Nozzle

검색결과 201건 처리시간 0.035초

다유체 모델을 이용한 노즐 내부 유동에 대한 수치적 연구 (A Numerical Analysis of Internal Nozzle Flows Through the Multi-Fluid Model)

  • 류봉우;이창식
    • 한국분무공학회지
    • /
    • 제16권4호
    • /
    • pp.186-194
    • /
    • 2011
  • This study performed the numerical analysis of the internal nozzle flows including cavitation phenomena by using the automated body-fitted grid generator and the multi-fluid model. The effect of grid refinement and the validation of multifluid model were investigated using four computational meshes under two test conditions. The mesh #3 was chosen as the optimum which can reduce the computational time and have good prediction ability to identify the cavitation region simultaneously. In addition, the computed results using multi-fluid model were compared with the reference experimental observations and numerical simulation results using homogeneous equilibrium model. From the distribution of volume fraction and velocity field, the multi-fluid model predicted the internal nozzle flows well when the liquid quality parameters were selected as $1.0{\times}10^{12}$ for initial number density and 25 ${\mu}m$ for bubble diameter.

회전하는 멀티 패킷 블레이드 시스템의 과도특성 (Transient characteristics of a rotating multi-packet blade system)

  • 권승민;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.463-463
    • /
    • 2014
  • Multi-packet blade systems usually undergo multiple nozzle excitations during operation. For the design of multi-packet blade systems undergoing multiple nozzle excitations, transient characteristics around an operating frequency and resonance frequencies should be identified. In this study the equations of motion of multi-packet blade systems undergoes multiple nozzle excitations are derived. The reliability of the derived equations is verified by obtaining responses at resonance frequencies. Then, using the model, the effects of system parameters on the transient characteristics of the system are investigated.

  • PDF

멀티노즐/보조전극-Electrohydrodynamic 공정을 통한 PCL 나노파이버 제작 (Electrohydrodynamic Process Supplemented by Multiple-Nozzle and Auxiliary Electrodes for Fabricating PCL Nanofibers)

  • 윤현;김근형;김완두
    • 폴리머
    • /
    • 제32권4호
    • /
    • pp.334-339
    • /
    • 2008
  • 최근 전기방사공정은 다양한 고분자의 마이크로 및 나노 크기 섬유를 만드는 기술로서 널리 사용되어 왔다. 일반적으로 많은 연구자들에 의하면, 다중노즐 전기방사공정은 노즐들 사이의 전기장 간섭효과 때문에 짧은 시간에 높은 생산성을 갖기 어려웠다. 이러한 문제를 극복하기 위하여 본 연구에서는 다양한 보조전극을 이용한 다중노즐 전기방사공정을 개발하였다. 본 연구에서 사용된 물질은 바이오소재로서 많이 사용되고 있는 poly($\varepsilon$-carprolactone)(PCL)을 사용하였다. 다중노즐 시스템의 영향을 확인하기 위하여 전기방사의 안정성, 다중노즐을 사용하였을 때의 생산성 및 제조된 나노섬유의 크기와 안정성을 보조전극을 사용하였을 때와 사용하지 않았을 때를 비교하였다. 결과적으로 보조전극을 사용한 노즐의 안정성이 사용하지 않은 노즐에 비해 전기방사 안정성과 우수한 생산성을 보였다.

고체 입자 소각로에서 연료/산화제의 연소 특성에 관한 수치해석적 연구 (A Numerical Study on Combustion Characteristics of Fuel/Oxidizer in a Solid-Particle Incinerator)

  • 김수호;손채훈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2012년도 제45회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.3-4
    • /
    • 2012
  • Characteristics of the flow in the incinerator were studied in terms of the cold flow and combustion using multi-staged tangential burner. The design parameters such as deflection angle of main nozzle, and decline angle of assist nozzle habe been changed. The effects of each parameter on burning characteristics have been investigated.

  • PDF

PDPA계측에 의한 다공 디젤 노즐의 분무 미립화 특성에 관한 연구 (A Study on the Spray Atomization Characteristics of a Multi-Hole Diesel Nozzle using PDPA System)

  • 이지근;오제하;강신재;노병준
    • 한국분무공학회지
    • /
    • 제4권1호
    • /
    • pp.45-54
    • /
    • 1999
  • The spray characteristics of a direct injection multi-hole diesel nozzle having the 2-spring nozzle holder were investigated by using the image processing system and a PDPA(phase Bowler particle analyzer) system. The spray tip penetration, the spray angle, and the droplet diameter and velocity with the variation of the pump speed, injection quantity were measured. From, the experiments, we know that there are small droplets which are not to be detected with spray image around the leading edge of the spray. In order to represent the mean characteristics of the intermittent spray very well, it is very important to set the time windows accurately. From the measurements along the axis of the spray, close to the nozzle, the initially injected droplets are overtaken by droplets that follow them. And also there are the maximum axial mean velocity and SMD at the following part of the leading edge of the spray.

  • PDF

듀얼 노즐 FDM 프린터에서 노즐 간의 간섭을 최소화하는 모델의 빌드 방향 최적화를 위한 방법 (A Method for Optimizing Building Position of Model to Minimize Interference between Nozzles in FDM with Dual-nozzles)

  • 김태영;이용구
    • 한국CDE학회논문집
    • /
    • 제22권1호
    • /
    • pp.37-43
    • /
    • 2017
  • 3D printing techniques can be used in various application fields and many researches have been reported. FDM (Fused Deposition modeling) can make multi-material or multi-color models with the simultaneous use of two or more filaments. In a dual-nozzle FDM printers, while the active nozzle is working, the remaining nozzle will be idle. The remaining molten resins inside an idle nozzle can ooze out unwantedly. The spill over from the resting nozzle produces unwanted remaining on the fabricated product. In this research, we suggest a method for optimizing building position of a model to minimize the unwanted spill-over that could possibly contaminate the final product. The method is based on minimizing the two intersection volumes. The first intersection volume is obtained by intersecting the volume defined by the first material and the Minkowski sum between the volume of the first material and the vector obtained by subtracting the center point of the first nozzle from the center point of the second nozzle. The second intersection volume can be obtained by reversing the role of the first and second volumes and nozzles. Some results obtained from the implementation using the Parasolid (Siemens) geometric modeling kernel is presented.

1열 원형 서브머지드 충돌수분류군에 의한 열전달의 실험적 연구 (Impingement Heat Transfer Within a Row of Submerged Circular Water Jets)

  • 엄기찬
    • 설비공학논문집
    • /
    • 제22권8호
    • /
    • pp.538-544
    • /
    • 2010
  • An experimental investigation is presented to study the effect nozzle spacing, jet to plate spacing and Reynolds number on the local heat transfer to normally upward impinging submerged circular water jets on a flat heated surface. Nozzle arrays are a single jet(nozzle dia. = 8 mm), a row of 3 jets(nozzle dia. = 4.6 mm, nozzle spacing = 37.5 mm) and a row of 5 jets(nozzle dia. = 3.6 mm, nozzle spacing = 25 mm), and jet to plate spacing ranging from 16∼80 mm(H/D = 2∼10) is tested. Reynolds number based on single jet exit condition is varied 30000∼70000($V_o$ = 3∼7 m/s). Except for the condition of H/D = 10, the average Nusselt number of multi-jet is higher than that of single jet. For H/D = 2, average Nusselt number is increased by 50.3∼82.5% for a row of 3 jets and by 52.9∼65.2% on a row of 5 jets when compared to the average Nusselt number on the single jet.