• Title/Summary/Keyword: Multi Marker

Search Result 129, Processing Time 0.173 seconds

An Intelligent System of Marker Gene Selection for Classification of Cancers using Microarray Data (마이크로어레이 데이터를 이용한 암 분류 표지 유전자 선별 시스템)

  • Park, Su-Young;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.10
    • /
    • pp.2365-2370
    • /
    • 2010
  • The method of cancer classification based on microarray could contribute to being accurate cancer classification by finding differently expressing gene pattern statistically according to a cancer type. Therefore, the process to select a closely related informative gene with a particular cancer classification to classify cancer using present microarray technology with effect is essential. In this paper, the system can detect marker genes to likely express the most differentially explaining the effects of cancer using ovarian cancer microarray data. And it compare and analyze a performance of classification of the proposed system with it of established microarray system using multi-perceptron neural network layer. Microarray data set including marker gene that are selected using ANOVA method represent the highest classification accuracy of 98.61%, which show that it improve classification performance than established microarray system.

Application of Disease Resistance Markers for Developing Elite Tomato Varieties and Lines

  • Kim, Hyoun-Joung;Lee, Heung-Ryul;Hyun, Ji-Young;Won, Dong-Chan;Hong, Dong-Oh;Cho, Hwa-Jin;Lee, Kyung-Ah;Her, Nam-Han;Lee, Jang-Ha;Harn, Chee-Hark
    • Horticultural Science & Technology
    • /
    • v.29 no.4
    • /
    • pp.336-344
    • /
    • 2011
  • Using the abundant available information about the tomato genome, we developed DNA markers that are linked to disease resistant loci and performed marker-assisted selection (MAS) to construct multi-disease resistant lines and varieties. Resistance markers of Ty-1, T2, and I2, which are linked to disease resistance to Tomato yellow leaf curl virus (TYLCV), Tomato mosaic virus (ToMV), and Fusarium wilt, respectively, were developed in a co-dominant fashion. DNA sequences near the resistance loci of TYLCV, ToMV, and Fusarium wilt were used for primer design. Reported candidate markers for powdery mildew-resistance were screened and the 32.5Cla marker was selected. All four markers (Ty-1, T2, I2, and 32.5Cla) were converted to cleavage amplification polymorphisms (CAPS) markers. Then, the CAPS markers were applied to 96 tomato lines to determine the phenetic relationships among the lines. This information yielded clusters of breeding lines illustrating the distribution of resistant and susceptible characters among lines. These data were utilized further in a MAS program for several generations, and a total of ten varieties and ten inbred lines were constructed. Among four traits, three were introduced to develop varieties and breeding lines through the MAS program; several cultivars possessed up to seven disease resistant traits. These resistant trait-related markers that were developed for the tomato MAS program could be used to select early stage seedlings, saving time and cost, and to construct multi-disease resistant lines and varieties.

Repeatability of a Multi-segment Foot Model with a 15-Marker Set in Normal Children

  • Kim, Eo Jin;Shin, Hyuk Soo;Lee, Jae Hee;Kyung, Min Gyu;Yoo, Hyo Jeong;Yoo, Won Joon;Lee, Dong Yeon
    • Clinics in Orthopedic Surgery
    • /
    • v.10 no.4
    • /
    • pp.484-490
    • /
    • 2018
  • Background: The use of three-dimensional multi-segment foot models (3D MFMs) is increasing since they have superior ability to illustrate the effect of foot and ankle pathologies on intersegmental motion of the foot compared to single-segment foot model gait analysis. However, validation of the repeatability of the 3D MFMs is important for their clinical use. Although many MFMs have been validated in normal adults, research on MFM repeatability in children is lacking. The purpose of this study is to validate the intrasession, intersession, and interrater repeatability of an MFM with a 15-marker set (DuPont foot model) in healthy children. Methods: The study included 20 feet of 20 healthy children (10 boys and 10 girls). We divided the participants into two groups of 10 each. One group was tested by the same operator in each test (intersession analysis), while the other group was tested by a different operator in each test (interrater analysis). The multiple correlation coefficient (CMC) and intraclass correlation coefficient (ICC) were calculated to assess repeatability. The difference between the two sessions of each group was assessed at each time point of gait cycle. Results: The intrasession CMC and ICC values of all parameters showed excellent or very good repeatability. The intersession CMC of many parameters showed good or better repeatability. Interrater CMC and ICC values were generally lower for all parameters than intrasession and intersession. The mean gaps of all parameters were generally similar to those of the previous study. Conclusions: We demonstrated that 3D MFM using a 15-marker set had high intrasession, intersession, and interrater repeatability in the assessment of foot motion in healthy children but recommend some caution in interpreting the hindfoot parameters.

Context-free marker controlled watershed transform for efficient multi-object detection and segmentation (다중 물체의 효과적 검출과 분할을 위한 문맥자유 마커 제어 분수계 변환)

  • Seo, Gyeong Seok;Park, Chang Jun
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.38 no.3
    • /
    • pp.1-1
    • /
    • 2001
  • 본 논문에서는 복잡 배경으로부터 임의의 다중물체를 효과적으로 검출함과 동시에 고속 분할할 수 있는 문맥자유 마커제어 분수계 변환 (context-free marker controlled watershed transform)을 제안하였다. 먼저 잡음에 강건한 주목 연산자 (attention operator)를 써서 복잡 배경 속의 여러 물체 별로 그 위치를 검출하여 문맥자유 마커를 추출하고, 이를 마커로 한정된 레이블링 (marker constrained labeling)을 하여 최소값 부과과정이 필요 없는 문맥자유 마커제어 분수계 변환을 제안함으로써 과분할없이 신속하게 분할할 수 있도록 하였다. 다중 물체가 포함된 복잡 영상에 적용 실험하여, 대상 물체에 대한 사전정보 없이도 과분할과 처리시간을 대폭 줄여 효과적으로 다중 물체를 검출함과 동시에 고속 분할이 가능함을 확인 할 수 있었다.

Genetic Diversity of Barley Cultivars as Revealed by SSR Masker

  • Kim, Hong-Sik;Park, Kwang-Geun;Baek, Seong-Bum;Suh, Sae-Jung;Nam, Jung-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.379-383
    • /
    • 2002
  • Allelic diversity of 44 microsatellite marker loci originated from the coding regions of specific genes or the non-coding regions of barley genome was analyzed for 19 barley genotypes. Multi-allelic variation was observed at the most of marker loci except for HVM13, HVM15, HVM22, and HVM64. The number of different alleles ranged from 2 to 12 with a mean of 4.0 alleles per micro-satellite. Twenty-one alleles derived from 10 marker loci are specific for certain genotypes. The level of polymorphism (Polymorphic Information Content, PIC) based on the band pattern frequencies among genotypes was relatively high at the several loci such as HVM3, HVM5, HVM14, HVM36, HVM62 and HVM67. In the cluster analysis using genetic similarity matrix calculated from microsatellite-derived DNA profiles, two major groups were classified and the spike-row type was a major factor for clustering. Correlation between genetic similarity matrices based on microsatellite markers and pedigree data was highly significant ($r=0.57^{**}$), but these two parameters were moderately associated each other. On the other hand, RAPD-based genetic similarity matrix was more highly associated with microsatellite-based genetic similarity ($r=0.63^{**}$) than coefficient of parentage.

Genomic Tools and Their Implications for Vegetable Breeding

  • Phan, Ngan Thi;Sim, Sung-Chur
    • Horticultural Science & Technology
    • /
    • v.35 no.2
    • /
    • pp.149-164
    • /
    • 2017
  • Next generation sequencing (NGS) technologies have led to the rapid accumulation of genome sequences through whole-genome sequencing and re-sequencing of crop species. Genomic resources provide the opportunity for a new revolution in plant breeding by facilitating the dissection of complex traits. Among vegetable crops, reference genomes have been sequenced and assembled for several species in the Solanaceae and Cucurbitaceae families, including tomato, pepper, cucumber, watermelon, and melon. These reference genomes have been leveraged for re-sequencing of diverse germplasm collections to explore genome-wide sequence variations, especially single nucleotide polymorphisms (SNPs). The use of genome-wide SNPs and high-throughput genotyping methods has led to the development of new strategies for dissecting complex quantitative traits, such as genome-wide association study (GWAS). In addition, the use of multi-parent populations, including nested association mapping (NAM) and multiparent advanced generation intercross (MAGIC) populations, has helped increase the accuracy of quantitative trait loci (QTL) detection. Consequently, a number of QTL have been discovered for agronomically important traits, such as disease resistance and fruit traits, with high mapping resolution. The molecular markers for these QTL represent a useful resource for enhancing selection efficiency via marker-assisted selection (MAS) in vegetable breeding programs. In this review, we discuss current genomic resources and marker-trait association analysis to facilitate genome-assisted breeding in vegetable species in the Solanaceae and Cucurbitaceae families.

Shoot-tip culture for massive production of radish foundation seeds (무 원종 대량생산을 위한 경정배양)

  • Han Yong Park;You Kyoung Kim;Soo Bin Choi;Sug Youn Mo
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.82-88
    • /
    • 2023
  • Shoot-tip culture was used to produce clonal plants of radish stock seeds. Using 6-benzyladenine (BA), the largest number of RA2 line multi-shoots were formed with an average of 14.67 shoots on 1.33 µM BA in early seedlings and 11.33 shoots on 1.78 µM BA in juvenile seedlings. The largest number of RA4 line multi-shoots were formed with an average of 11.67 shoots on 2.22 µM BA in early seedlings and 13.67 shoots on 1.33 µM BA in juvenile seedlings. There was little difference in the significance level by BA concentration in both lines. Using Thidiazuron (TDZ), the number of RA2 line multi-shoots increased with increasing TDZ concentration, forming the largest number of multi-shoots in 0.45 µM TDZ (7.0 and 3.0 multi-shoots for early and juvenile seedlings, respectively), but few multi-shoots were formed from TDZ 2.25 and 4.5 µM. RA4 line produced almost no multi-shoots in early seedlings, and 3.7 multi-shoots were produced in 0.23 and 0.45 µM TDZ in juvenile seedlings, but not at higher concentrations. Analysis of the tissue culture seedlings grown by cultivating the generated multi-shoots with Radish Foundation seeds using SSR marker revealed a weak pattern of mutation in the generated tissue culture seedlings, but there was no mutant. In addition, in terms of root roots, both RA2 and RA4 lines generally had the best rooting, number of roots, and degree of root development in 4.9 µM indol-3- butyric acid (IBA).

Design of Mixed Reality based Convergence Edutainment System using Cloud Service (클라우드 서비스를 이용한 복합현실 기반의 융합형 에듀테인먼트 시스템 설계)

  • Kim, Donghyun;Kim, Minho
    • Journal of the Korea Convergence Society
    • /
    • v.6 no.3
    • /
    • pp.103-109
    • /
    • 2015
  • TOLED(Transparent, Organic Light Emitting Diodes) based edutainment system has been studied to solve the actual feeling training and educational experience problem of e-learning. However, edutainment system using TOLED has a problem for the non-detection of multi marker array and rotate marker array, and it has problem for the dissonance phenomena caused by Illumination Environment between real world and virtual object. It also has a do not provide services through a variety of devices problem. Therefore, in this paper, we designed a system that provides a realistic actual feeling edutainment contents by recognizes the marker array rotation and a plurality of marker arrangement via an improved marker detection technique. And to unify the real space and virtual space of the lighting environment through a nested block layer.

Development of a Molecular Marker Linked to the A4 Locus and the Structure of HD Genes in Pleurotus eryngii

  • Lee, Song Hee;Ali, Asjad;Ha, Byeongsuk;Kim, Min-Keun;Kong, Won-Sik;Ryu, Jae-San
    • Mycobiology
    • /
    • v.47 no.2
    • /
    • pp.200-206
    • /
    • 2019
  • Allelic differences in A and B mating-type loci are a prerequisite for the progression of mating in the genus Pleurotus eryngii; thus, the crossing is hampered by this biological barrier in inbreeding. Molecular markers linked to mating types of P. eryngii KNR2312 were investigated with randomly amplified polymorphic DNA to enhance crossing efficiency. An A4-linked sequence was identified and used to find the adjacent genomic region with the entire motif of the A locus from a contig sequenced by PacBio. The sequence-characterized amplified region marker $7-2_{299}$ distinguished A4 mating-type monokaryons from KNR2312 and other strains. A BLAST search of flanked sequences revealed that the A4 locus had a general feature consisting of the putative HD1 and HD2 genes. Both putative HD transcription factors contain a homeodomain sequence and a nuclear localization sequence; however, valid dimerization motifs were found only in the HD1 protein. The ACAAT motif, which was reported to have relevance to sex determination, was found in the intergenic region. The SCAR marker could be applicable in the classification of mating types in the P. eryngii breeding program, and the A4 locus could be the basis for a multi-allele detection marker.

SF3B4 as an early-stage diagnostic marker and driver of hepatocellular carcinoma

  • Shen, Qingyu;Nam, Suk Woo
    • BMB Reports
    • /
    • v.51 no.2
    • /
    • pp.57-58
    • /
    • 2018
  • An accurate diagnostic marker for detecting early-stage hepatocellular carcinoma (eHCC) is clinically important, since early detection of HCC remarkably improves patient survival. From the integrative analysis of the transcriptome and clinicopathologic data of human multi-stage HCC tissues, we were able to identify barrier-to-autointegration factor 1 (BANF1), procollagen-lysine, 2-oxoglutarate 5-dioxygenase 3 (PLOD3) and splicing factor 3b subunit 4 (SF3B4) as early HCC biomarkers which could be detected in precancerous lesions of HCC, with superior capabilities to diagnose eHCC compared to the currently popular HCC diagnostic biomarkers: GPC3, GS, and HSP70. We then showed that SF3B4 knockdown caused G1/S cell cycle arrest by recovering $p27^{kip1}$ and simultaneously suppressing cyclins, and CDKs in liver cancer cells. Notably, we demonstrated that aberrant SF3B4 overexpression altered the progress of splicing progress of the tumor suppressor gene, kruppel like factor 4 (KLF4), and resulted in non-functional skipped exon transcripts. This contributes to liver tumorigenesis via transcriptional inactivation of $p27^{kip1}$ and simultaneous activation of Slug genes. Our results suggest that SF3B4 indicates early-stage HCC in precancerous lesions, and also functions as an early-stage driver in the development of liver cancer.