• 제목/요약/키워드: Multi MEC Servers

검색결과 9건 처리시간 0.017초

5G Multi-access Edge Computing 표준기술 동향 (5G MEC (Multi-access Edge Computing): Standardization and Open Issues)

  • 이승익;이종화;안병준
    • 전자통신동향분석
    • /
    • 제37권4호
    • /
    • pp.46-59
    • /
    • 2022
  • The 5G MEC (Multi-access Edge Computing) technology offers network and computing functionalities that allow application services to improve in terms of network delay, bandwidth, and security, by locating the application servers closer to the users at the edge nodes within the 5G network. To offer its interoperability within various networks and user equipment, standardization of the 5G MEC technology has been advanced in ETSI, 3GPP, and ITU-T, primarily for the MEC platform, transport support, and MEC federation. This article offers a brief review of the standardization activities for 5G MEC technology and the details about the system architecture and functionalities developed accordingly.

A Video Cache Replacement Scheme based on Local Video Popularity and Video Size for MEC Servers

  • Liu, Pingshan;Liu, Shaoxing;Cai, Zhangjing;Lu, Dianjie;Huang, Guimin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제16권9호
    • /
    • pp.3043-3067
    • /
    • 2022
  • With the mobile traffic in the network increases exponentially, multi-access edge computing (MEC) develops rapidly. MEC servers are deployed geo-distribution, which serve many mobile terminals locally to improve users' QoE (Quality of Experience). When the cache space of a MEC server is full, how to replace the cached videos is an important problem. The problem is also called the cache replacement problem, which becomes more complex due to the dynamic video popularity and the varied video sizes. Therefore, we proposed a new cache replacement scheme based on local video popularity and video size to solve the cache replacement problem of MEC servers. First, we built a local video popularity model, which is composed of a popularity rise model and a popularity attenuation model. Furthermore, the popularity attenuation model incorporates a frequency-dependent attenuation model and a frequency-independent attenuation model. Second, we formulated a utility based on local video popularity and video size. Moreover, the weights of local video popularity and video size were quantitatively analyzed by using the information entropy. Finally, we conducted extensive simulation experiments based on the proposed scheme and some compared schemes. The simulation results showed that our proposed scheme performs better than the compared schemes in terms of hit rate, average delay, and server load under different network configurations.

Computation Offloading with Resource Allocation Based on DDPG in MEC

  • Sungwon Moon;Yujin Lim
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.226-238
    • /
    • 2024
  • Recently, multi-access edge computing (MEC) has emerged as a promising technology to alleviate the computing burden of vehicular terminals and efficiently facilitate vehicular applications. The vehicle can improve the quality of experience of applications by offloading their tasks to MEC servers. However, channel conditions are time-varying due to channel interference among vehicles, and path loss is time-varying due to the mobility of vehicles. The task arrival of vehicles is also stochastic. Therefore, it is difficult to determine an optimal offloading with resource allocation decision in the dynamic MEC system because offloading is affected by wireless data transmission. In this paper, we study computation offloading with resource allocation in the dynamic MEC system. The objective is to minimize power consumption and maximize throughput while meeting the delay constraints of tasks. Therefore, it allocates resources for local execution and transmission power for offloading. We define the problem as a Markov decision process, and propose an offloading method using deep reinforcement learning named deep deterministic policy gradient. Simulation shows that, compared with existing methods, the proposed method outperforms in terms of throughput and satisfaction of delay constraints.

MEC를 위한 세션 테스트 도구 개발 (Implementation of Session Test Tool for MEC)

  • 김태영;김태현;진성근
    • 한국산업정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.11-19
    • /
    • 2021
  • 5G 네트워크의 등장으로 초저지연 서비스에 대한 요구가 제기되었다. 그러나, 사용자로부터 지리적으로 멀리 위치한 클라우드 센터의 컴퓨팅 서비스로는 이러한 요구를 만족할 수 없다. 이러한 요구에 따라 클라우드 컴퓨팅 서비스를 사용자 근처에 위치한 기지국 혹은 교환국에 전진 배치하여 저지연 서비스를 제공하는 Multi-access Edge Computing (MEC) 기술이 주목받고 있다. 우리는 구글의 Kubernetes를 기반으로 MEC를 위한 클라우드 컴퓨팅 환경을 구축하였다. 이때, 안정적인 동작 확인을 위해 많은 수의 컨테이너가 발생시키는 로드에 강건하게 견딜 수 있는지 실험적으로 확인할 필요가 있다. 이를 위하여 우리는 Kubernetes 환경에서 다양한 컨테이너를 생성하여 네트워크 자원과 컴퓨팅 자원의 안정도를 측정할 수 있는 도구를 개발하였다.

MEC 시스템에서 태스크 파티셔닝 기법의 성능 비교 (Performance Comparison of Task Partitioning Methods in MEC System)

  • 문성원;임유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제11권5호
    • /
    • pp.139-146
    • /
    • 2022
  • 최근 사물 인터넷의 발전과 함께 차량과 IT 기술의 융합되어 자율주행과 같은 고성능의 어플리케이션들이 등장하면서 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 부상하였다. 이런 계산 집약적인 태스크들을 낮은 지연시간 안에 제공하기 위해, 여러 MEC 서버(MECS)들이 협력하여 해당 태스크를 수행할 수 있도록 태스크를 파티셔닝하는 기법들이 많이 제안되고 있다. 태스크 파티셔닝과 관련된 연구들은 모바일 디바이스에서 태스크를 파티셔닝하여 여러 MECS들에게 오프로딩을 하는 기법과 디바이스에서 MECS로 오프로딩한 후 해당 MECS에서 파티셔닝하여 다른 MECS들에게 마이그레이션하는 기법으로 나누어볼 수 있다. 본 논문에서는 오프로딩과 마이그레이션을 이용한 파티셔닝 기법들을 파티셔닝 대상 선정 방법 및 파티셔닝 개수 변화에 따른 서비스 지연시간, 거절률 그리고 차량의 에너지 소비량 측면에서의 성능을 분석하였다. 파티셔닝 개수가 증가할수록 지연시간의 성능은 향상하나, 거절률과 에너지 소모량의 성능은 감소한다.

An Offloading Scheduling Strategy with Minimized Power Overhead for Internet of Vehicles Based on Mobile Edge Computing

  • He, Bo;Li, Tianzhang
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.489-504
    • /
    • 2021
  • By distributing computing tasks among devices at the edge of networks, edge computing uses virtualization, distributed computing and parallel computing technologies to enable users dynamically obtain computing power, storage space and other services as needed. Applying edge computing architectures to Internet of Vehicles can effectively alleviate the contradiction among the large amount of computing, low delayed vehicle applications, and the limited and uneven resource distribution of vehicles. In this paper, a predictive offloading strategy based on the MEC load state is proposed, which not only considers reducing the delay of calculation results by the RSU multi-hop backhaul, but also reduces the queuing time of tasks at MEC servers. Firstly, the delay factor and the energy consumption factor are introduced according to the characteristics of tasks, and the cost of local execution and offloading to MEC servers for execution are defined. Then, from the perspective of vehicles, the delay preference factor and the energy consumption preference factor are introduced to define the cost of executing a computing task for another computing task. Furthermore, a mathematical optimization model for minimizing the power overhead is constructed with the constraints of time delay and power consumption. Additionally, the simulated annealing algorithm is utilized to solve the optimization model. The simulation results show that this strategy can effectively reduce the system power consumption by shortening the task execution delay. Finally, we can choose whether to offload computing tasks to MEC server for execution according to the size of two costs. This strategy not only meets the requirements of time delay and energy consumption, but also ensures the lowest cost.

협력적인 차량 엣지 컴퓨팅에서의 태스크 마이그레이션 (Task Migration in Cooperative Vehicular Edge Computing)

  • 문성원;임유진
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제10권12호
    • /
    • pp.311-318
    • /
    • 2021
  • 최근 사물인터넷의 기술이 빠르게 발전하면서 실시간 및 고성능의 처리를 요구하는 서비스들을 위해 멀티 액세스 엣지 컴퓨팅(MEC)이 차세대 기술로 부상하고 있다. 제한적인 서비스 영역을 가지는 MEC 사이에서 사용자들의 잦은 이동성은 MEC 환경에서 다뤄야 할 문제 중 하나이다. 본 논문에서는 이동성이 많은 차량 엣지 컴퓨팅 환경(VEC)을 고려하였으며, 강화 학습 기법의 일종인 DQN을 이용하여 마이그레이션 여부와 대상을 결정하는 태스크 마이그레이션 기법을 제안하였다. 제안한 기법의 목표는 차량 엣지 컴퓨팅 서버(VECS)들의 큐잉 지연시간의 차이를 이용한 로드 밸런싱을 고려하여 QoS 만족도 향상과 시스템의 처리량을 향상시키는 것이다. 제안한 기법을 다른 기법들과의 성능 비교를 통해 QoS 만족도 측면에서 약 14-49%, 서비스 거절률 측면에서는 약 14-38%로 더 좋은 성능을 보임을 확인하였다.

DRL based Dynamic Service Mobility for Marginal Downtime in Multi-access Edge Computing

  • ;;추현승
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.114-116
    • /
    • 2022
  • The advent of the Multi-access Edge Computing (MEC) paradigm allows mobile users to offload resource-intensive and delay-stringent services to nearby servers, thereby significantly enhancing the quality of experience. Due to erratic roaming of mobile users in the network environment, maintaining maximum quality of experience becomes challenging as they move farther away from the serving edge server, particularly due to the increased latency resulting from the extended distance. The services could be migrated, under policies obtained using Deep Reinforcement Learning (DRL) techniques, to an optimal edge server, however, this operation incurs significant costs in terms of service downtime, thereby adversely affecting service quality of experience. Thus, this study addresses the service mobility problem of deciding whether to migrate and where to migrate the service instance for maximized migration benefits and marginal service downtime.

Strategy for Task Offloading of Multi-user and Multi-server Based on Cost Optimization in Mobile Edge Computing Environment

  • He, Yanfei;Tang, Zhenhua
    • Journal of Information Processing Systems
    • /
    • 제17권3호
    • /
    • pp.615-629
    • /
    • 2021
  • With the development of mobile edge computing, how to utilize the computing power of edge computing to effectively and efficiently offload data and to compute offloading is of great research value. This paper studies the computation offloading problem of multi-user and multi-server in mobile edge computing. Firstly, in order to minimize system energy consumption, the problem is modeled by considering the joint optimization of the offloading strategy and the wireless and computing resource allocation in a multi-user and multi-server scenario. Additionally, this paper explores the computation offloading scheme to optimize the overall cost. As the centralized optimization method is an NP problem, the game method is used to achieve effective computation offloading in a distributed manner. The decision problem of distributed computation offloading between the mobile equipment is modeled as a multi-user computation offloading game. There is a Nash equilibrium in this game, and it can be achieved by a limited number of iterations. Then, we propose a distributed computation offloading algorithm, which first calculates offloading weights, and then distributedly iterates by the time slot to update the computation offloading decision. Finally, the algorithm is verified by simulation experiments. Simulation results show that our proposed algorithm can achieve the balance by a limited number of iterations. At the same time, the algorithm outperforms several other advanced computation offloading algorithms in terms of the number of users and overall overheads for beneficial decision-making.