• Title/Summary/Keyword: Multi Input System

Search Result 1,106, Processing Time 0.031 seconds

Multi-Parameter Based Scheduling for Multi-user MIMO Systems

  • Chanthirasekaran, K.;Bhagyaveni, M.A.;Parvathy, L. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.6
    • /
    • pp.2406-2412
    • /
    • 2015
  • Multi-user multi-input multi-output (MU-MIMO) system has attracted the 4th generation wireless network as one of core technique for performance enrichment. In this system rate control is a challenging problem and another problem is optimization. Proper scheduling can resolve these problems by deciding which set of user and at which rate the users send their data. This paper proposes a new multi-parameter based scheduling (MPS) for downlink multi-user multiple-input multiple-output (MU-MIMO) system under space-time block coding (STBC) transmissions. Goal of this MPS scheme is to offer improved link level performance in terms of a low average bit error rate (BER), high packet delivery ratio (PDR) with improved resource utilization and service fairness among the user. This scheme allows the set of users to send data based on their channel quality and their demand rates. Simulation compares the MPS performance with other scheduling scheme such as fair scheduling (FS), normalized priority scheduling (NPS) and threshold based fair scheduling (TFS). The results obtained prove that MPS has significant improvement in average BER performance with improved resource utilization and fairness as compared to the other scheduling scheme.

A design of a robust adaptive fuzzy controller globally stabilizing the multi-input nonlinear system with state-dependent uncertainty (상태변수 종속 불확실성이 포함된 다입력 비선형 계통에 대한 전역 안정성이 보장되는 견실한 적응 퍼지 제어기 설계)

  • Park, Young-Hwan;Park, Gwi-Tae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.4
    • /
    • pp.297-305
    • /
    • 1996
  • In this paper a novel robust adaptive fuzzy controller for the nonlinear system with state-dependent uncertainty is proposed. The conventional adaptive fuzzy controller determines the function of state variable bounding the state-dependent uncertain term in the system dynamics on the local state space by off-line calculation. Whereas the proposed method determines that function by the fuzzy inference so that it guarantees the stability of the closed loop system globally on the whole state space. In addition, the method is applicable to the multi-input system. We applied the proposed method to the Burn Control of the Tokamak fusion reactor whose dynamics contains the state-dependent uncertainty and proved the effectiveness of the scheme by using the simulation results.

  • PDF

A New Design Method for Multi-mode Input Shapers to Eliminate Residual Vibration in Dynamic Systems (동적 시스템의 잔류진동 제거를 위한 새로운 다모드 입력성형기 설계 방법)

  • Park, Sang-Won;Hong, Seong-Wook;Jon, Danielson
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.4
    • /
    • pp.100-106
    • /
    • 2009
  • The current tendency toward light weight and fast machines has lead to a need to suppress vibration of flexible dynamic systems. Input shaping is an efficient tool to eliminate transient and residual vibration caused by motion of these systems. This paper proposes a new formulation of the design method for multi-mode input shapers to eliminate residual vibration in flexible dynamic systems. The essence of the proposed method is to minimize the number of impulses to be n+1 for n-mode input shapers. This paper also suggests a solution procedure to solve the complex-valued nonlinear matrix equation for the input shapers. The proposed method is applied to two-mode input shapers. This paper discusses characteristics of several input shapers obtained under the same condition. Simulations and experiments show that the proposed method is very useful for designing multi-mode input shapers.

A Learning Method of PID Controller by Jacobian in Multi Variable System (다변수 시스템에서 자코비안을 이용한 PID 제어기 학습법)

  • 임윤규;정병묵
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.112-119
    • /
    • 2003
  • Generally, PID controller is not suitable to control multi variable system because it is very difficult to tune the PID gains. However, this paper shows that it is not hard to tune the PID gains if we can find a Jacobian matrix of the system. The Jacobian matrix expresses the ratio of output variations according to input variations. It is possible to adjust the input values in order to reduce the output error using the Jacobian. When the colt function is composed of error related terms, the gradient approach can tune the PID gains to minimize the function. In simulation, a hydrofoil catamaran with two inputs and two outputs is applied as a multi variable system. We can easily get the multi variable PID controller by the proposed teaming method. When the controller is compared with LQR controller, the performance is as good as that of LQR controller with a modeling equation.

Capacity Evaluation of Multi-Carrier CDMA System in Correlated MIMO Fading Channel (상관 MIMO 페이딩 채널에서 Multi-Carrier CDMA 시스템의 용량 평가)

  • Roh, Jae Sung;Cho, Sung Joon;Kim, Choon Gil
    • Journal of Advanced Navigation Technology
    • /
    • v.7 no.1
    • /
    • pp.51-58
    • /
    • 2003
  • Generally, multi-path is viewed as an undesirable feature of wireless communications. Therefore, diversity reception and adaptive array schemes are proposed to mitigate its effects. Recently, to increase the spectrum efficiency and the link reliability, multiple-input multiple-output (MIMO) scheme is devised to exploit multi-path in a scattering wireless channel. In this paper, we have evaluated the channel capacity of MIMO Multi-Carrier CDMA system in path correlation fading channel. And, the channel capacity of MIMO system is compared with single-input single-output (SISO) system. From the results, the MIMO multi-carrier CDMA system with path correlation yields better performance with respect to channel capacity than a SISO system.

  • PDF

A Design of Wide Input Range Multi-mode Rectifier for Wireless Power Transfer System (넓은 입력 범위를 갖는 무선 전력 전송용 다중 모드 정류기 설계)

  • Choi, Young-Su;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.49 no.4
    • /
    • pp.34-42
    • /
    • 2012
  • In this paper, a wide-input range CMOS multi-mode rectifier for wireless power transfer system is presented. The output voltage of multi-mode rectifier is sensed by comparator and switches are controlled based on it. The mode of multi-mode rectifier is automatically selected by the switches among full-wave rectifier, 1-stage voltage multiplier and 2-stage voltage multiplier. In full-wave rectifier mode, the rectified output DC voltage ranges from 9 V to 19 V for a input AC voltage from 10 V to 20 V. However, the input-range of the multi-mode rectifier is more improved than that of the conventional full-wave rectifier by 5V, so the rectified output DC voltage ranges from 7.5 V to 19 V for a input AC voltage from 5 V to 20 V. The power conversion efficiency of the multi-mode rectifier is 94 % in full-wave rectifier mode. The proposed multi-mode rectifier is fabricated in a $0.35{\mu}m$ CMOS process with an active area of $2500{\mu}m{\times}1750{\mu}m$.

Experimental Performance Evaluation of MIMO Underwater Acoustic Communication in Water Tank (수조에서 MIMO 수중음향통신의 실험적 성능 고찰)

  • Gwun, Byung-Chul;Kim, Ki-Man
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.7
    • /
    • pp.1577-1582
    • /
    • 2013
  • In this paper, we have analyzed the performance of MIMO (Multi-Input Multi-Output) underwater acoustic communication by using the acquired data via the experiments in water tank. First of all, in the pursuit of this aim, we have measured the channel transfer characteristics at several transceiver locations. The transmitted signal was modulated by QPSK(Quadrature Phase Shit Keying) and the received signal was recovered through the detector that contains the zero forcing equalizer. A maximum 30~40 ms delay was appeared because of physically closed water tank environment that has the harsh multi-path transmission conditions. In result of experiment, even though the bit error rate showed comparatively large when $2{\times}2$ MIMO system with two transmitters and receivers was considered. However, we confirmed it has approximately 15% enhanced performance compared with SISO (Single-Input Single-Output) system.

Optimization of input carrier powers considering satellite link environment in the multi-level SCPC systems (Multi-level SCPC 시스템에서 링크환경을 고려한 중계기 입력반송파 전력의 최적화)

  • 김병균;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1240-1255
    • /
    • 1996
  • This paper suggests power optimization technique in multi-level SCPC system as a method for efficient utilization of limited satellite power. The power optimization is realized by optimal assignment of satellite input carrier powers considering interference and noise generated in up-link and down-link. The Fletcher-Powell algorithm searching minimum(or maximum) point using gradient information is used to detemine the optimal input carrier powers. To apply Flectcher-Powell algorithm mathematical descriptions and their partial derivatives to interference and nose are presented. Because a target, which should be optimized, is satellite input carrier power, amplitude of each carrier group will be assumed to be an independent variable. The performance criterion for optimal power assignmentis classified into 4 categories with respect to CNR of destination receiver earth station to meet the requirement for various satellite link environment. Simulation results for two-level, four-level and six-level SCPC system are presented.

  • PDF