• Title/Summary/Keyword: Multi Input Converter (MIC)

Search Result 4, Processing Time 0.019 seconds

A New Soft Switching Dual Input Converter for Renewable Energy Systems

  • Harchegani, Amir Torki;Mahdavi, Mohammad
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1127-1136
    • /
    • 2017
  • This paper proposes a new soft switching dual input converter for renewable energy systems. Multi-input converters are produced by combining discrete converters. These converters reduce the number of circuit elements, cost, volume and weight of the converter and provide a constant output power in different weather conditions. Furthermore, soft switching techniques can be applied to increase efficiency. In this paper, a Zero Voltage Transition (ZVT) dual input boost converter is presented. Only one auxiliary circuit is used to provide the soft switching condition for all of the semiconductor elements. The proposed converter, which is simulated by ORCAD software, is theoretically analyzed. To confirm the validity of the theoretical analysis, a prototype of proposed converter was constructed. Simulation and experimental results confirm the theoretical analysis. An efficiency comparison shows a one percent improvement at nominal loads.

Modeling and Regulator Design for Three-Input Power Systems with Decoupling Control

  • Li, Yan;Zheng, Trillion Q.;Zhao, Chuang;Chen, Jiayao
    • Journal of Power Electronics
    • /
    • v.12 no.6
    • /
    • pp.912-924
    • /
    • 2012
  • In hybrid renewable power systems, the use of a multiple-input dc/dc converter (MIC) leads to simpler circuit and lower cost, when compared to the conventional use of several single-input converters. This paper proposed a novel three-input buck/boost/buck-boost converter, which can be used in applications with various values of input voltage. The energy sources in this converter can deliver power to the load either simultaneously or individually in one switching period. The steady relationship, the power management strategy and the small-signal circuit model of this converter have been derived. With decoupling technology, modeling and regulator design can be obtained under multi-loop control modes. Finally, three generating methods of a multiple-input buck/boost/buck-boost converter is given, and this method can be extended to the other multiple-input dc/dc converters.

Synthesis and Implementation of a Multi-Port DC/DC Converter for Hybrid Electric Vehicles

  • Santhosh, T. K.;Natarajan, K.;Govindaraju, C.
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1178-1189
    • /
    • 2015
  • A non-isolated Multiple Input Converter (MIC) with an input port, two storage ports and a load port is proposed. The synthesis of the proposed four port converter with its switch realization is presented. A steady state analysis of each operating mode with a small-signal model is derived, and a stability analysis is done. A mode selection controller is proposed to automatically choose a specific operating mode based on the voltage levels of the different source and storage units. In addition, a voltage control loop is used to regulate the output voltage. A 200W prototype is built with a TMS320F28027 DSP controller to test the feasibility of the operating modes. Simulation and experimental results show the ability of the proposed converter to handle multiple inputs either individually or simultaneously.

Differential Power Processing System for the Capacitor Voltage Balancing of Cost-effective Photovoltaic Multi-level Inverters

  • Jeon, Young-Tae;Kim, Kyoung-Tak;Park, Joung-Hu
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.1037-1047
    • /
    • 2017
  • The Differential Power Processing (DPP) converter is a promising multi-module photovoltaic inverter architecture recently proposed for photovoltaic systems. In this paper, a DPP converter architecture, in which each PV-panel has its own DPP converter in shunt, performs distributed maximum power point tracking (DMPPT) control. It maintains a high energy conversion efficiency, even under partial shading conditions. The system architecture only deals with the power differences among the PV panels, which reduces the power capacity of the converters. Therefore, the DPP systems can easily overcome the conventional disadvantages of PCS such as centralized, string, and module integrated converter (MIC) topologies. Among the various types of the DPP systems, the feed-forward method has been selected for both its voltage balancing and power transfer to a modified H-bridge inverter that needs charge balancing of the input capacitors. The modified H-bridge multi-level inverter had some advantages such as a low part count and cost competitiveness when compared to conventional multi-level inverters. Therefore, it is frequently used in photovoltaic (PV) power conditioning system (PCS). However, its simplified switching network draws input current asymmetrically. Therefore, input capacitors in series suffer from a problem due to a charge imbalance. This paper validates the operating principle and feasibility of the proposed topology through the simulation and experimental results. They show that the input-capacitor voltages maintain the voltage balance with the PV MPPT control operating with a 140-W hardware prototype.