Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.5.1178

Synthesis and Implementation of a Multi-Port DC/DC Converter for Hybrid Electric Vehicles  

Santhosh, T. K. (Department of Electrical and Electronics Engineering, Government College of Engineering)
Natarajan, K. (Department of Electrical and Electronics Engineering, Sri Ramakrishna Institute of Technology, Coimbatore)
Govindaraju, C. (Department of Electrical and Electronics Engineering, Government College of Engineering)
Publication Information
Journal of Power Electronics / v.15, no.5, 2015 , pp. 1178-1189 More about this Journal
Abstract
A non-isolated Multiple Input Converter (MIC) with an input port, two storage ports and a load port is proposed. The synthesis of the proposed four port converter with its switch realization is presented. A steady state analysis of each operating mode with a small-signal model is derived, and a stability analysis is done. A mode selection controller is proposed to automatically choose a specific operating mode based on the voltage levels of the different source and storage units. In addition, a voltage control loop is used to regulate the output voltage. A 200W prototype is built with a TMS320F28027 DSP controller to test the feasibility of the operating modes. Simulation and experimental results show the ability of the proposed converter to handle multiple inputs either individually or simultaneously.
Keywords
DSP; Hybrid Electric Vehicle; Multiple Input Converter; Stateflow model; Synthesis; Ultracapacitor;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C.-T. Pan, C.-F. Chuang, and C.-C. Chu, “A novel transformerless interleaved high step-down conversion ratio DC–DC converter with low switch voltage stress,” IEEE Trans. Ind. Electron., Vol. 61, No. 10, pp. 5290-5299, Oct. 2014.   DOI
2 I. O. Lee and G.W. Moon, “Half-bridge integrated ZVS full-bridge converter with reduced conduction loss for electric vehicle battery chargers,” IEEE Trans. Ind. Electron., Vol. 61, No. 8, pp. 3978-3988, Aug. 2014.   DOI
3 R. Tymerski and V. Vorperian, “Generation and classification of PWM DC-to-DC converters,” IEEE Trans. Aerosp. Electron. Syst., Vol. 24, No. 6, pp. 743-754, Nov. 1988.   DOI
4 A. Kwasinski, “Identification of feasible topologies for multiple-input DC–DC converters,” IEEE Trans. Power Electron., Vol. 24, No. 3, pp. 856-861, Mar. 2009.   DOI
5 H. Wu, K. Sun, S. Ding, and Y. Xing, “Topology derivation of non-isolated three-port DC-DC converters from DIC and DOC,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3297-3307, Jul. 2013.   DOI
6 T. K. Santhosh and C. Govindaraju, “Simulation and analysis of a four port DC/DC converter for hybrid electric vehicle,” in Proc. Power and Energy Systems: Towards Sustainable Energy, pp. 236-240, 2014.
7 R. Erickson and D. Maksimovic, Fundamentals of Power Electronics, 2nd ed., Springer, 2001.
8 Z. Li, O. Onar, A. Khaligh, and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” 2009 Twenty-Fourth Annual IEEE Applied Power Electronics Conference and Exposition, pp. 591-596, 2009.
9 Y.-C. Liu and Y.-M. Chen, “A systematic approach to synthesizing multi-input DC–DC converters,” IEEE Trans. Power Electron., Vol. 24, No. 1, pp. 116-127, Sep. 2009.   DOI
10 H. Behjati and A. Davoudi, “A multiple-input multiple-output DC–DC converter,” IEEE Trans. Ind. Appl., Vol. 49, No. 3, pp. 1464-1479, May 2013.   DOI
11 P. Grbovic, P. Delarue, P. Le Moigne, and P. Bartholomeus, “Modeling and control of the ultracapacitor-based regenerative controlled electric drives,” IEEE Trans. Ind. Electron., Vol. 58, No. 8, pp. 3471-3484, Aug. 2011.   DOI
12 A. C. A. Umarikar and L. Umanand, “Modelling of switched mode power converters using bond graph,” IEE Proceedings - Electric Power Applications, Vol. 152, No. 1, p. 51, 2005.   DOI
13 H. Wu, P. Xu, H. Hu, Z. Zhou, and Y. Xing, “Multiport converters based on integration of full-bridge and bidirectional DC–DC topologies for renewable generation systems,” IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 856-869, Feb. 2014.   DOI
14 H. Matsuo, W. Lin, F. Kurokawa, T. Shigemizu, and N. Watanabe, “Characteristics of the multiple-input DC– DC converter,” IEEE Trans. Ind. Electron., Vol. 51, No. 3, pp. 625-631, Jun. 2004.   DOI
15 D. S. Gautam, F. Musavi, M. Edington, W. Eberle, and W. G. Dunford, “An automotive onboard 3.3-kW battery charger for PHEV application,” IEEE Trans. Veh. Technol, Vol. 61, No. 8, pp. 3466-3474, Oct. 2012.   DOI
16 J.-Y. Lee and H.-J. Chae, “6.6-kW onboard charger design using DCM PFC converter with harmonic modulation technique and two-stage DC/DC converter,” IEEE Trans. Ind. Electron., Vol. 61, No. 3, pp. 1243-1252, Mar. 2014.   DOI
17 W. Gao, “Performance comparison of a fuel cell-battery hybrid powertrain and a fuel cell ultracapacitor hybrid powertrain,” in Power Electronics in Transportation, pp. 143-150, 2004.
18 W. Qian, H. Cha, F. Z. Peng, and L. M. Tolbert, “55-kW variable 3X DC-DC converter for plug-in hybrid electric vehicles,” IEEE Trans. Power Electron., Vol. 27, No. 4, pp. 1668-1678, Apr. 2012.   DOI
19 W. Jiang and B. Fahimi, “Multiport power electronic interface – Concept, modeling, and design,” IEEE Trans. Power Electron., Vol. 26, No. 7, pp. 1890-1900, Jul. 2011.   DOI
20 Z. Du, B. Ozpineci, L. M. Tolbert, and J. N. Chiasson, “DC–AC cascaded H-Bridge multilevel boost inverter with no inductors for electric/hybrid electric vehicle applications,” IEEE Trans. Ind. Appl., Vol. 45, No. 3, pp. 963-970, May/Jun. 2009.   DOI
21 Y.-J. Lee, A. Khaligh, and A. Emadi, “Advanced integrated bidirectional AC/DC and DC/DC converter for plug-in hybrid electric vehicles,” IEEE Trans. Veh. Technol., Vol. 58, No. 8, pp. 3970-3980, Oct. 2009.   DOI
22 O. Zehner, “Unclean at any speed,” IEEE Spectrum, Vol. 50, No. 7, pp. 40-45, Jul. 2013.   DOI
23 L. Solero, A. Lidozzi, and J. Pomilio, “Design of multiple-input power converter for hybrid vehicles,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1007-1016, Sep. 2005.   DOI
24 N. Benavides and P. Chapman, “Power budgeting of a multiple-input buck-boost converter,”IEEE Trans. Power Electron., Vol. 20, No. 6, pp. 1303-1309, Nov. 2005.   DOI
25 J. Voelcker, “Electric vehicles need more study, less emotion,” IEEE Spectrum, Vol. 50, No. 8, pp. 8-8, Aug. 2013.   DOI
26 S. Saxena, A. Phadke, and A. Gopal, “Understanding the fuel savings potential from deploying hybrid cars in China,” Applied Energy, Vol. 113, pp. 1127–1133, Jan. 2014.   DOI
27 B. K. Bose, “Global energy scenario and impact of power electronics in 21st century,” IEEE Trans. Ind. Electron., Vol. 60, No. 7, pp. 2638-2651, Jul. 2013.   DOI
28 S. M. Lukic, A. Emadi, K. Rajashekara, and S. Williamson, “Topological overview of hybrid electric and fuel cell vehicular power system architectures and configurations,” IEEE Trans. Veh. Technol., Vol. 54, No. 3, pp. 763-770, May 2005.   DOI
29 A. Emadi and K. Rajashekara, “Power electronics and motor drives in electric, hybrid electric, and plug-in hybrid electric vehicles,” IEEE Trans. Ind. Electron., Vol. 55, No. 6, pp. 2237-2245, Jun. 2008.   DOI
30 J. Bauman and M. Kazerani, “A comparative study of fuel-cell–battery, fuel-cell–ultracapacitor, and fuel-cell– battery–ultracapacitor vehicles,” IEEE Trans. Veh. Technol., Vol. 57, No. 2, pp. 760-769, Mar. 2008.   DOI
31 G. Pede, A. Iacobazzi, S. Passerini, A. Bobbio, and G. Botto, “FC vehicle hybridisation: an affordable solution for an energy-efficient FC powered drive train,” Journal of Power Sources, Vol. 125, No. 2, pp. 280-291, Jan. 2004.   DOI
32 Z. Amjadi and S. S. Williamson, “Power-electronics-based solutions for plug-in hybrid electric vehicle energy storage and management systems,” IEEE Trans. Ind. Electron., Vol. 57, No. 2, pp. 608-616, Feb. 2010.   DOI