• Title/Summary/Keyword: Multi GPS

Search Result 349, Processing Time 0.025 seconds

A study of position estimation method for multi-copter accurate guided control (멀티콥터 정밀 유도 제어를 위한 위치 추정기법에 대한 연구)

  • Jo, Dong-Hun;Song, Yong-Gyu
    • 한국항공운항학회:학술대회논문집
    • /
    • 2016.05a
    • /
    • pp.35-38
    • /
    • 2016
  • 본 논문에서는 실외 환경에서 GPS 센서 보다 빠른 주기의 위치 추정 기법을 소개한다. 빠른 제어주기가 필요한 멀티콥터 시스템에서 위치 제어에 GPS 센서를 사용하기 위해서는 상대적으로 느린 GPS 데이터의 출력주기를 보완하는 처리가 필요하다. 이 문제를 해결하기 위해 오픈소스 프로젝트를 분석하고 활용하여 가능성을 확인하는 선행 연구를 진행하였다. matlab에서 알고리즘을 검증하고 임베디드 장비에 직접 구동해봄으로써 성능을 확인하였다. 이 알고리즘에서는 멀터콥터의 위치 추정 계산을 위해 AHRS, GPS센서, barometer 센서를 사용한다.

  • PDF

Development of L1 C/A Code GPS receiver using chipset (Chip Set을 이용한 L1 C/A Code GPS 수신기 개발)

  • 심우성;박상현;이상정
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1376-1379
    • /
    • 1996
  • In this paper a GPS receiver is developed using commercial chipsets. GP2010 RF front end and GP2021 Multi-channel correlator of GEC PLESSY are adapted in designing the receiver hardware. MC 68340 is used for controlling the correlator GP2021 and implementing the navigation processing. Also presented are some test results of the developed receiver whose software has an interrupt driven structure rather than common real-time kernel based structure.

  • PDF

The Design and Implementation of a Vehicle Location Tracing System using RM Multi-Session Processing (RM 다중세션 처리를 이용한 차량 추적 시스템의 설계 및 구현)

  • Lee, Yong Kwon;Jang, Chung Ryong;Lee, Dae Sik
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.10 no.2
    • /
    • pp.61-73
    • /
    • 2014
  • An automatic vehicle location tracing system is to build GIS server and on transmission for providing service in various ways by collecting a GPS location information from each vehicle. It is to save GPS data from OBU built-in on the vehicle and transmit the GPS data using the RSU on the roadside and WAVE communication technology. The collected data from the RSU is transmitted to the GIS server and stored in DB(database) and based on the GPS data that was collected from the each vehicle the system is to provide user service to suit the applications so it is to provide various services between RSU and OBU. In this paper, by implementing a multi-session process between the RM and the RMA a variety of services between RSU and OBU are provided. In addition, the system is designed and implemented using GPS to provide a variety of services, for the services provided from each RMA by configuring them as an independent session so it enables a variety of services implemented from one of RSU. With the result of the comparative analysis on the multi-session processing and single-session processing it shows that the differenes of them are minor in repect of the data loss rate and the data transfer rate but various services can be provided.

Performance Analysis of Long Baseline Relative Positioning using Dual-frequency GPS/BDS Measurements

  • Choi, Byung-Kyu;Yoon, Ha Su;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.8 no.2
    • /
    • pp.87-94
    • /
    • 2019
  • The Global Navigation Satellite System (GNSS) Real-Time Kinematic (RTK) positioning has been widely used in geodesy, surveying, and navigation fields. RTK can benefit enormously from the integration of multi-GNSS. In this study, we develop a GPS/BeiDou Navigation Satellite System (BDS) RTK integration algorithm for long baselines ranging from 128 km to 335 km in South Korea. The positioning performance with GPS/BDS RTK, GPS-only RTK, and BDS-only RTK is compared in terms of the positioning accuracy. An improvement of positioning accuracy over long baselines can be found with GPS/BDS RTK compared with that of GPS-only RTK and that of BDS-only RTK. The positioning accuracy of GPS/BDS RTK is better than 2 cm in the horizontal direction and better than 5 cm in the vertical direction. A lower Relative Dilution of Precision (RDOP) value with GPS/BDS integration can obtain a better positional precision for long baseline RTK positioning.

Construction and Measurement of a T-DMB/GPS/Mobile Antenna for Vehicular Application (차량에 적용 가능한 T-DMB/GPS/Mobile 안테나의 제작과 측정)

  • Lee, Seung-Jae;Yoon, Joong-Han;Lee, Jin-Woo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.5
    • /
    • pp.629-636
    • /
    • 2011
  • This paper presents the design of a novel integrated T-DMB/GPS/Mobile antenna for vehicular application. The T-DMB antenna is designed with a modified meander-type microstrip patch providing linearly a polarized broadside radiation pattern. The GPS antenna is designed with an inserted slot in the patch antenna providing circularly polarized broadside radiation pattern. The Mobile (GSM, AMPS, DCS, PCS, UMTS, etc.) antenna is designed as a modified G-type patch antenna providing multi-band operation. Experimental results indicate that the impedance bandwidth (VSWR 1:2.5) of the proposed T-DMB /GPS/Mobile antenna satisfactorily matches that of the simulation results. The 2D and 3D radiation patterns and gains according to the results of the experiment are also presented and discussed.

A GPS Receiver Structure for Multi-beamforming (다중 빔 형성을 위한 GPS 수신기 구조)

  • Lee, Geon-Woo;Lim, Deok-Won;Lee, Chang-Won;Park, Chan-Sik;Hwang, Dong-Hwan;Lee, Sang-Jeong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.2
    • /
    • pp.182-190
    • /
    • 2009
  • GPS receivers can be disrupted by intentional or unintentional jamming, then it is unable to receive GPS signals and it is impossible to get the correct navigation results. Anti-jamming schemes using array antennas are being studied well due to high performance of those, and the efforts to apply them to GPS receiver are also being done. A GPS receiver structure for a multiple beam-forming scheme among those schemes has been proposed in this paper, and the performance is also compared with that using a general GPS receiver structure. For a general GPS receiver structure, each satellite signal which is formed by a beam-forming scheme is summed to be processed in a part of digital signal processing. For a proposed GPS receiver structure, however, each satellite signal is respectively processed by a designated channel in a part of digital signal processing. Finally, it is confirmed that the proposed GPS receiver structure is superior to a general GPS receiver structure in a point of the carrier to noise power ratio and the navigation accuracy using a software platform.

Analysis of Multi-Differential GNSS Positioning Accuracy in Various Signal Reception Environments

  • Tae, Hyunu;Kim, Hye-In;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.15-24
    • /
    • 2018
  • This study analyzed positioning accuracy of the multi-differential global navigation satellite system (DGNSS) algorithm that integrated GPS, GLONASS, and BDS. Prior to the analysis, four sites of which satellite observation environment was different were selected, and satellite observation environments for each site were analyzed. The analysis results of the algorithm performance at each of the survey points showed that high positioning performance was obtained by using DGPS only without integration of satellite navigation systems in the open sky environment but the positioning performance of multi-DGNSS became higher as the satellite observation environments degraded. The comparison results of improved positioning performance of the multi-DGNSS at the poor reception environment compared to differential global positioning system (DGPS) positioning results showed that horizontal accuracy was improved by 78% and vertical accuracy was improved by 65% approximately.

Design of Component-Based GNSS Multi-Band IF Signal Generator

  • Cho, Sung Lyong;Lim, Deok Won;Yeo, Sang-Rae;Park, Chansik;Hwang, Dong-Hwan;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.29-34
    • /
    • 2012
  • A software GNSS signal generator for the GPS L1/L2/L5 and Galileo E1/E5 signals is proposed in this paper. And this signal generator is designed and implemented with several components by considering the reuse and expansion of components for similar GNSS signals. The characteristics of the reusability of the components are confirmed with the carrier generation and the band-pass filter components. And the functionality of the GNSS multi-band IF signal generator is validated by using the commercial software GPS L1 receiver, and the performance of signal acquisition, tracking and accuracy of horizontal position error are analyzed for this validation. As a result, the GPS L1 signal generator operates successfully and it could be expected that other signal generators also operate well because most of components are the same as those of the GPS L1 signal generator.

A Low-profile Internal Antenna for GSM/GPS/DCS/US-PCS Mobile Handsets (GSM/GPS/DCS/US-PCS 대역 이동 단말기용 저자세 내장형 안테나)

  • Jung Woo-Jae;Jung Byung-Woon;Lee Hak-Yong;Lee Byungie
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.4 no.1 s.6
    • /
    • pp.89-95
    • /
    • 2005
  • In this paper, a quad-band antenna for GSM/GPS/DCS/US-PCS handsets is proposed. The proposed antenna is low-profile for mounting in limited inner space of a handset. It consists of three open points with quarter wave length for multi-band operation. The ground plane below the patch is removed for wide-bandwidth without the variation of antenna size and the slot is added at the center of the patch for convenient matching in high frequency band. It provides a enough bandwidth within VSWR 3:1 at all bands. In addition, the measured peak gains are between -2.19 and 2.09 in anechoic chamber (10m$\times$6m$\times$4m).

  • PDF

Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer

  • Yi, Ting-Hua;Li, Hong-Nan;Gu, Ming
    • Smart Structures and Systems
    • /
    • v.11 no.4
    • /
    • pp.331-348
    • /
    • 2013
  • Effective monitoring, reliable data analysis, and rational data interpretations are challenges for engineers who are specialized in bridge health monitoring. This paper demonstrates how to use the Global Positioning System (GPS) and accelerometer data to accurately extract static and quasi-static displacements of the bridge induced by ambient effects. To eliminate the disadvantages of the two separate units, based on the characteristics of the bias terms derived from the GPS and accelerometer respectively, a wavelet based multi-step filtering method by combining the merits of the continuous wavelet transform (CWT) with the discrete stationary wavelet transform (SWT) is proposed so as to address the GPS deformation monitoring application more efficiently. The field measurements are carried out on an existing suspension bridge under the normal operation without any traffic interference. Experimental results showed that the frequencies and absolute displacements of the bridge can be accurate extracted by the proposed method. The integration of GPS and accelerometer can be used as a reliable tool to characterize the dynamic behavior of large structures such as suspension bridges undergoing environmental loads.