• Title/Summary/Keyword: Multi Feature Selection

Search Result 104, Processing Time 0.022 seconds

Effective Multi-label Feature Selection based on Large Offspring Set created by Enhanced Evolutionary Search Process

  • Lim, Hyunki;Seo, Wangduk;Lee, Jaesung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.23 no.9
    • /
    • pp.7-13
    • /
    • 2018
  • Recent advancement in data gathering technique improves the capability of information collecting, thus allowing the learning process between gathered data patterns and application sub-tasks. A pattern can be associated with multiple labels, demanding multi-label learning capability, resulting in significant attention to multi-label feature selection since it can improve multi-label learning accuracy. However, existing evolutionary multi-label feature selection methods suffer from ineffective search process. In this study, we propose a evolutionary search process for the task of multi-label feature selection problem. The proposed method creates large set of offspring or new feature subsets and then retains the most promising feature subset. Experimental results demonstrate that the proposed method can identify feature subsets giving good multi-label classification accuracy much faster than conventional methods.

Sparse and low-rank feature selection for multi-label learning

  • Lim, Hyunki
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.7
    • /
    • pp.1-7
    • /
    • 2021
  • In this paper, we propose a feature selection technique for multi-label classification. Many existing feature selection techniques have selected features by calculating the relation between features and labels such as a mutual information scale. However, since the mutual information measure requires a joint probability, it is difficult to calculate the joint probability from an actual premise feature set. Therefore, it has the disadvantage that only a few features can be calculated and only local optimization is possible. Away from this regional optimization problem, we propose a feature selection technique that constructs a low-rank space in the entire given feature space and selects features with sparsity. To this end, we designed a regression-based objective function using Nuclear norm, and proposed an algorithm of gradient descent method to solve the optimization problem of this objective function. Based on the results of multi-label classification experiments on four data and three multi-label classification performance, the proposed methodology showed better performance than the existing feature selection technique. In addition, it was showed by experimental results that the performance change is insensitive even to the parameter value change of the proposed objective function.

Feature Selection for Multi-Class Support Vector Machines Using an Impurity Measure of Classification Trees: An Application to the Credit Rating of S&P 500 Companies

  • Hong, Tae-Ho;Park, Ji-Young
    • Asia pacific journal of information systems
    • /
    • v.21 no.2
    • /
    • pp.43-58
    • /
    • 2011
  • Support vector machines (SVMs), a machine learning technique, has been applied to not only binary classification problems such as bankruptcy prediction but also multi-class problems such as corporate credit ratings. However, in general, the performance of SVMs can be easily worse than the best alternative model to SVMs according to the selection of predictors, even though SVMs has the distinguishing feature of successfully classifying and predicting in a lot of dichotomous or multi-class problems. For overcoming the weakness of SVMs, this study has proposed an approach for selecting features for multi-class SVMs that utilize the impurity measures of classification trees. For the selection of the input features, we employed the C4.5 and CART algorithms, including the stepwise method of discriminant analysis, which is a well-known method for selecting features. We have built a multi-class SVMs model for credit rating using the above method and presented experimental results with data regarding S&P 500 companies.

Noise Robust Speaker Verification Using Subband-Based Reliable Feature Selection (신뢰성 높은 서브밴드 특징벡터 선택을 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • MALSORI
    • /
    • no.63
    • /
    • pp.125-137
    • /
    • 2007
  • Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.

  • PDF

Feature Selection Method by Information Theory and Particle S warm Optimization (상호정보량과 Binary Particle Swarm Optimization을 이용한 속성선택 기법)

  • Cho, Jae-Hoon;Lee, Dae-Jong;Song, Chang-Kyu;Chun, Myung-Geun
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.2
    • /
    • pp.191-196
    • /
    • 2009
  • In this paper, we proposed a feature selection method using Binary Particle Swarm Optimization(BPSO) and Mutual information. This proposed method consists of the feature selection part for selecting candidate feature subset by mutual information and the optimal feature selection part for choosing optimal feature subset by BPSO in the candidate feature subsets. In the candidate feature selection part, we computed the mutual information of all features, respectively and selected a candidate feature subset by the ranking of mutual information. In the optimal feature selection part, optimal feature subset can be found by BPSO in the candidate feature subset. In the BPSO process, we used multi-object function to optimize both accuracy of classifier and selected feature subset size. DNA expression dataset are used for estimating the performance of the proposed method. Experimental results show that this method can achieve better performance for pattern recognition problems than conventional ones.

Feature Selecting and Classifying Integrated Neural Network Algorithm for Multi-variate Classification (다변량 데이터의 분류 성능 향상을 위한 특질 추출 및 분류 기법을 통합한 신경망 알고리즘)

  • Yoon, Hyun-Soo;Baek, Jun-Geol
    • IE interfaces
    • /
    • v.24 no.2
    • /
    • pp.97-104
    • /
    • 2011
  • Research for multi-variate classification has been studied through two kinds of procedures which are feature selection and classification. Feature Selection techniques have been applied to select important features and the other one has improved classification performances through classifier applications. In general, each technique has been independently studied, however consideration of the interaction between both procedures has not been widely explored which leads to a degraded performance. In this paper, through integrating these two procedures, classification performance can be improved. The proposed model takes advantage of KBANN (Knowledge-Based Artificial Neural Network) which uses prior knowledge to learn NN (Neural Network) as training information. Each NN learns characteristics of the Feature Selection and Classification techniques as training sets. The integrated NN can be learned again to modify features appropriately and enhance classification performance. This innovative technique is called ALBNN (Algorithm Learning-Based Neural Network). The experiments' results show improved performance in various classification problems.

Diagnosis of Alzheimer's Disease using Wrapper Feature Selection Method

  • Vyshnavi Ramineni;Goo-Rak Kwon
    • Smart Media Journal
    • /
    • v.12 no.3
    • /
    • pp.30-37
    • /
    • 2023
  • Alzheimer's disease (AD) symptoms are being treated by early diagnosis, where we can only slow the symptoms and research is still undergoing. In consideration, using T1-weighted images several classification models are proposed in Machine learning to identify AD. In this paper, we consider the improvised feature selection, to reduce the complexity by using wrapping techniques and Restricted Boltzmann Machine (RBM). This present work used the subcortical and cortical features of 278 subjects from the ADNI dataset to identify AD and sMRI. Multi-class classification is used for the experiment i.e., AD, EMCI, LMCI, HC. The proposed feature selection consists of Forward feature selection, Backward feature selection, and Combined PCA & RBM. Forward and backward feature selection methods use an iterative method starting being no features in the forward feature selection and backward feature selection with all features included in the technique. PCA is used to reduce the dimensions and RBM is used to select the best feature without interpreting the features. We have compared the three models with PCA to analysis. The following experiment shows that combined PCA &RBM, and backward feature selection give the best accuracy with respective classification model RF i.e., 88.65, 88.56% respectively.

An Improvement of FSDD for Evaluating Multi-Dimensional Data (다차원 데이터 평가가 가능한 개선된 FSDD 연구)

  • Oh, Se-jong
    • Journal of Digital Convergence
    • /
    • v.15 no.1
    • /
    • pp.247-253
    • /
    • 2017
  • Feature selection or variable selection is a data mining scheme for selecting highly relevant features with target concept from high dimensional data. It decreases dimensionality of data, and makes it easy to analyze clusters or classification. A feature selection scheme requires an evaluation function. Most of current evaluation functions are based on statistics or information theory, and they can evaluate only for single feature (one-dimensional data). However, features have interactions between them, and require evaluation function for multi-dimensional data for efficient feature selection. In this study, we propose modification of FSDD evaluation function for utilizing evaluation of multiple features using extended distance function. Original FSDD is just possible for single feature evaluation. Proposed approach may be expected to be applied on other single feature evaluation method.

Feature Selection for Multi-Class Genre Classification using Gaussian Mixture Model (Gaussian Mixture Model을 이용한 다중 범주 분류를 위한 특징벡터 선택 알고리즘)

  • Moon, Sun-Kuk;Choi, Tack-Sung;Park, Young-Cheol;Youn, Dae-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.10C
    • /
    • pp.965-974
    • /
    • 2007
  • In this paper, we proposed the feature selection algorithm for multi-class genre classification. In our proposed algorithm, we developed GMM separation score based on Gaussian mixture model for measuring separability between two genres. Additionally, we improved feature subset selection algorithm based on sequential forward selection for multi-class genre classification. Instead of setting criterion as entire genre separability measures, we set criterion as worst genre separability measure for each sequential selection step. In order to assess the performance proposed algorithm, we extracted various features which represent characteristics such as timbre, rhythm, pitch and so on. Then, we investigate classification performance by GMM classifier and k-NN classifier for selected features using conventional algorithm and proposed algorithm. Proposed algorithm showed improved performance in classification accuracy up to 10 percent for classification experiments of low dimension feature vector especially.

Exploring the Performance of Multi-Label Feature Selection for Effective Decision-Making: Focusing on Sentiment Analysis (효과적인 의사결정을 위한 다중레이블 기반 속성선택 방법에 관한 연구: 감성 분석을 중심으로)

  • Jong Yoon Won;Kun Chang Lee
    • Information Systems Review
    • /
    • v.25 no.1
    • /
    • pp.47-73
    • /
    • 2023
  • Management decision-making based on artificial intelligence(AI) plays an important role in helping decision-makers. Business decision-making centered on AI is evaluated as a driving force for corporate growth. AI-based on accurate analysis techniques could support decision-makers in making high-quality decisions. This study proposes an effective decision-making method with the application of multi-label feature selection. In this regard, We present a CFS-BR (Correlation-based Feature Selection based on Binary Relevance approach) that reduces data sets in high-dimensional space. As a result of analyzing sample data and empirical data, CFS-BR can support efficient decision-making by selecting the best combination of meaningful attributes based on the Best-First algorithm. In addition, compared to the previous multi-label feature selection method, CFS-BR is useful for increasing the effectiveness of decision-making, as its accuracy is higher.