Recently, data-driven decision-making technology has become a key technology leading the data industry, and machine learning technology for this requires high-quality training datasets. However, real-world data contains missing values for various reasons, which degrades the performance of prediction models learned from the poor training data. Therefore, in order to build a high-performance model from real-world datasets, many studies on automatically imputing missing values in initial training data have been actively conducted. Many of conventional machine learning-based imputation techniques for handling missing data involve very time-consuming and cumbersome work because they are applied only to numeric type of columns or create individual predictive models for each columns. Therefore, this paper proposes a new data imputation technique called 'Denoising Self-Attention Network (DSAN)', which can be applied to mixed-type dataset containing both numerical and categorical columns. DSAN can learn robust feature expression vectors by combining self-attention and denoising techniques, and can automatically interpolate multiple missing variables in parallel through multi-task learning. To verify the validity of the proposed technique, data imputation experiments has been performed after arbitrarily generating missing values for several mixed-type training data. Then we show the validity of the proposed technique by comparing the performance of the binary classification models trained on imputed data together with the errors between the original and imputed values.
Ye-Eun, Lee;Seung-Hwa, Han;Dong-Gyu, Lee;Ho-Joon, Kim
KIPS Transactions on Software and Data Engineering
/
v.12
no.1
/
pp.51-58
/
2023
In this paper, we propose an organ segmentation technique for the automatic extraction of medical diagnostic indicators from X-ray images. In order to calculate diagnostic indicators of heart disease and spinal disease such as VHS(vertebral heart scale) and Cobb angle, it is necessary to accurately segment the thoracic spine, carina, and heart in a chest X-ray image. A deep neural network model in which the high-resolution representation of the image for each layer and the structure converted into a low-resolution feature map are connected in parallel was adopted. This structure enables the relative position information in the image to be effectively reflected in the segmentation process. It is shown that learning performance can be improved by combining the OCR module, in which pixel information and object information are mutually interacted in a multi-step process, and the channel attention module, which allows each channel of the network to be reflected as different weight values. In addition, a method of augmenting learning data is presented in order to provide robust performance against changes in the position, shape, and size of the subject in the X-ray image. The effectiveness of the proposed theory was evaluated through an experiment using 145 human chest X-ray images and 118 animal X-ray images.
Journal of Korean Library and Information Science Society
/
v.53
no.2
/
pp.355-375
/
2022
This study is to grasp LRM's feature and applications plan to reflect LRM to cataloging related standards and individual system through comparing and analyzing LRM with the FR model in terms of entities, attributes, and relationships. The application plan is suggested as follows. First, the entity can be extended by defining sub-entities of each entity in the standards and the individual system in order to reflect LRM, even though entities such as families, groups, identifiers, authorized access points, concepts, objects, events, agency and rules have been deleted in LRM. Second, the attribute should be subdivided in the standards and the individual system in order to apply LRM, though many attributes have been changed to relationships for linked data and decreased in LRM. In particular, more specific and detailed property names in the standards and the individual system should be clearly presented, and the vocabulary encoding scheme corresponding to each property should be also developed, since properties with similar functions or repetition in various entities, and material specific properties are generalized and integrated into comprehensive property names. Third, the relationship should be extended through newly declaring the refinement or subtype of the relationship and considering a multi-level relationship, since the relationship itself is general and abstract under increasing the number of relationships in comparing to the property. This study will be practically utilized in cataloging related standards and individual system for applying LRM.
Objective: This program aimed to reveal the association of feed intrinsic molecular structure with nutrient supply to animals from canola feedstocks and co-products from bio-oil processing. The special objective of this study was to quantify the relationship between molecular spectral feature and nutrient availability and develop nutrient prediction equation with vibrational molecular structure spectral profiles. Methods: The samples of feedstock (canola oil seeds) and co-products (meals and pellets) from different bio-oil processing plants in Canada (CA) and China (CH) were submitted to this molecular spectroscopic technique and their protein and carbohydrate related molecular spectral features were associated with the nutritional results obtained through the conventional methods of analyses for chemical and nutrient profiles, rumen degradable and intestinal digestible parameters. Results: The results showed that the spectral structural carbohydrates spectral peak area (ca. 1,487.8 to 1,190.8 cm-1) was the carbohydrate structure that was most significant when related to various carbohydrate parameters of canola meals (p<0.05, r>0.50). And spectral total carbohydrate area (ca. 1,198.5 to 934.3 cm-1) was most significant when studying the various carbohydrate parameters of canola seeds (p<0.05, r>0.50). The spectral amide structures (ca. 1,721.2 to 1,480.1 cm-1) were related to a few chemical and nutrient profiles, Cornell Net Carbohydrate and Protein System (CNCPS) fractions, truly absorbable nutrient supply based on the Dutch protein system (DVE/OEB), and NRC systems, and intestinal in vitro protein-related parameters in co-products (canola meals). Besides the spectral amide structures, α-helix height (ca. 1,650.8 to 1,643.1 cm-1) and β-sheet height (ca. 1,633.4 to 1,625.7 cm-1), and the ratio between them have shown to be related to many protein-related parameters in feedstock (canola oil seeds). Multi-regression analysis resulted in moderate to high R2 values for some protein related equations for feedstock (canola seeds). Protein related equations for canola meals and carbohydrate related equations for canola meals and seeds resulted in weak R2 and low p values (p<0.05). Conclusion: In conclusion, the attenuated total reflectance Fourier transform infrared spectroscopy vibrational molecular spectroscopy can be a useful resource to predict carbohydrate and protein-relates nutritional aspects of canola seeds and meals.
The aim of this study is to explain characteristics of Maitreya and Maitreya belief from a point of view that 'Jeungsan is the very Maitreya(甑山卽彌勒)'. In 『Jeon-gyeong』, Maitreya is mentioned several times. Thus, new religions of Jeungsan of Daesoonjinrihoe take 'Jeungsan is the very Maitreya' belief for truth. Due to the fact that characteristics of Maitreya are so multi-layered and complicated, it is necessary to explain clearly what kind of feature Maitreya has in 『Jeon-gyeong』. If believing and following 'Jeungsan is the very Maitreya' without clarifying it, they will be faced with a problem that they regard Jeungsan of Supreme being of the Ninth Heaven as one of Maitreya and take its belief for truth. Furthermore, with respect to the characteristics of 'Jeungsan is the very Maitreya' belief, while believing in Mireukasaeng, longed-for Millenarian movement by people through Messianism and Mireukasaeng belief is found in Daesoon Thought, whereas there is a need how to understand the point that we cannot finped Messianism and Millenarian movement in Daesoon Thought. To solve this problem, I draw a conclusion that 'Jeungsan is the very Maitreya' in 『Jeon-gyeong』 has to be understood with two meanings by four demonstrations. First of all, the people perceived late Joseon dynasty as the age of decadence but Maitreya's divinity which is desired by the people is not divinity of Maitreya Sutra(Mileuggyeong). Maitreya's divinity is reflected in the people's cherished desire and it is newly created as the Messiah. Thus, the idea of Jeungsan being the very Maitreya was developed in a way that the people desired the Messiah, encompassing this inclination. That is the Messiah of the people and the divinity of Jeungsan. Although Jeungsan as Supreme being of the Ninth Heaven satisfied the people's desire, it shows a different way to salvation from the way in Maitreya Sutra(Mileuggyeong). It is 'the Great Reordering of the Universe' and 'the Great Reordering of the Three Realms'. Reordering in Jeungsan shows that divinity of Jeungsan is not limited to the people's Messiah. In other words, divinity of Jeungsan is established as The Messiah, surpassing divinity of Maitreya Sutra(Mileuggyeong). And following statements prove this divinity of Jeungsan. Jeungsan's emphasis is not only the people's desire and the Gods' appeal. Jeungsan's emphasis is that only does Supreme being of the Ninth Heaven correct heaven and earth, which is the Gods' appeal. Therefore, 'Jeungsan is the very Maitreya' belief embraces the people's Messianism and at the same time it runs with he Gods' appeal. Thus, Reordering through the Great Reordering of the Universe and the Great Reordering of the Three Realms builds up a new ideal world.
The Journal of the Korea institute of electronic communication sciences
/
v.17
no.2
/
pp.343-350
/
2022
It is worth verifying the effectiveness of data integration between data with different features. This study investigated whether the data integration affects the accuracy of deep neural network (DNN), and which integration method shows the best improvement. This study used two different public datasets. One public dataset was taken in an actual farm in India. And another was taken in a laboratory environment in Korea. Leaf images were selected from two different public datasets to have five classes which includes normal and four different types of plant diseases. DNN used pre-trained VGG16 as a feature extractor and multi-layer perceptron as a classifier. Data were integrated into three different ways to be used for the training process. DNN was trained in a supervised manner via the integrated data. The trained DNN was evaluated by using a test dataset taken in an actual farm. DNN shows the best accuracy for the test dataset when DNN was first trained by images taken in the laboratory environment and then trained by images taken in the actual farm. The results show that data integration between plant images taken in a different environment helps improve the performance of deep neural networks. And the results also confirmed that independent use of plant images taken in different environments during the training process is more effective in improving the performance of DNN.
The Journal of the Convergence on Culture Technology
/
v.9
no.2
/
pp.429-436
/
2023
Traditional Chinese music has a deep indigenous color and has its own unique way of thinking and characteristics. A consensus has already been formed that linear thinking is a major feature of traditional Chinese music, and it has been implemented in both traditional multi-tone and single-tone music. It is mainly expressed in the form of single-tone music or single-tone music. This linear thought of traditional Chinese music is formed by influencing factors in various fields. For example, it is related to national culture, geographical and natural environment, religious and philosophical background, traditional Chinese notation, individual characteristics of traditional musical instruments, Yulje, composition, and transmission methods. This thinking is different from Western classical music that pursues three-dimensional thinking, and Western music emphasizes the harmony of harmony, harmony of tone and texture, logic and identity of structure, and emphasizes the aspect of space. However, traditional Chinese music emphasizes the horizontal development of melody, the fluency of ancestors, and the continuity of structure. We aims to analyze the causes of linear thinking of traditional Chinese music so that it can be more useful in educational aspects and promote the succession and development of traditional music by transferring knowledge of ethnic music.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.33
no.3
/
pp.375-383
/
2023
Objectives: Coal-fired power plants feature diverse working conditions, including multi-layered employment structures and irregular work cycles due to outsourcing and non-standardized tasks. The current uniform occupational environment measurement systems have limitations in accurately assessing and evaluating these varied conditions. This study aims to propose alternative measurement and assessment strategies to supplement existing methods. Methods: Major domestic coal-fired power plants were selected as the study targets. To prepare for the study and establish strategies, work processes were identified and existing occupational environment measurement results were compared and analyzed. The study proceeded by employing three strategies: specific exposure groups (SEGs) measurement, continuous monitoring, and supplementary measurements, which were then compared and discussed. Results: Previous exposure index evaluations (5,268 cases) indicated that crystalline silica, a type of respirable particulate matter, had detection limits below the threshold (non-detectable) in 82.6% (4,349 cases) of instances. Exposures below 10% of the exposure limit were observed at a very low concentration of 96.1%. Similar exposure group measurements yielded results where detection limits were below the threshold in 38.2% of cases, and exposures below 10% of the limit were observed in 70.6%. Continuous monitoring indicated detection limits below the threshold in 12.6% of cases, and exposures below 10% of the limit were observed in 75.6%. Instances requiring active workplace management accounted for more than 30% of cases, with SEGs at 11.8% (four cases), showing a higher proportion compared to 3.0% (four cases) in continuous monitoring. For coal dust, exposures below 10% of the limit were highest in legal measurements at 90.2% (113 cases), followed by 74.0% (91 cases) in continuous monitoring, and 47.0% (16 cases) in SEGs. Instances exceeding 30% were most prevalent in SEGs at 14.7% (five cases), followed by legal measurements at 5.0% (eight cases), and continuous monitoring at 2.4% (three cases). When examining exposure levels through arithmetic means, crystalline silica was found to be 104.7% higher in SEGs at 0.0088 mg/m3 compared to 0.0043 mg/m3 in continuous monitoring. Coal dust measurements were highest in SEGs at 0.1247 mg/m3, followed by 0.1224 mg/m3 in legal measurements, and 0.0935 mg/m3 in continuous monitoring. Conclusions: Strategies involving SEGs measurement and continuous monitoring can enhance measurement reliability in environments with irregular work processes and frequent fluctuations in working conditions, as observed in coal-fired power plants. These strategies reduce the likelihood of omitting or underestimating processes and enhance measurement accuracy. In particular, a significant reduction in detection limits below the threshold for crystalline silica was observed. Supplementary measurements can identify worker exposure characteristics, uncover potential risks in blind spots of management, and provide a complementary method for legal measurements.
Journal of the Korea institute for structural maintenance and inspection
/
v.28
no.3
/
pp.1-9
/
2024
This study proposes a multi-scale template matching technique with image pyramids (TMI) to measure structural dynamic displacement using a vision sensor under atmospheric turbulence conditions and evaluates its displacement measurement performance. To evaluate displacement measurement performance according to distance, the three-story shear structure was designed, and an FHD camera was prepared to measure structural response. The initial measurement distance was set at 10m, and increased with an increment of 10m up to 40m. The atmospheric disturbance was generated using a heating plate under indoor illuminance condition, and the image was distorted by the optical turbulence. Through preliminary experiments, the feasibility of displacement measurement of the feature point-based displacement measurement method and the proposed method during atmospheric disturbances were compared and verified, and the verification results showed a low measurement error rate of the proposed method. As a result of evaluating displacement measurement performance in an atmospheric disturbance environment, there was no significant difference in displacement measurement performance for TMI using an artificial target depending on the presence or absence of atmospheric disturbance. However, when natural targets were used, RMSE increased significantly at shooting distances of 20 m or more, showing the operating limitations of the proposed technique. This indicates that the resolution of the natural target decreases as the shooting distance increases, and image distortion due to atmospheric disturbance causes errors in template image estimation, resulting in a high displacement measurement error.
The construction of smart communities is a new method and important measure to ensure the security of residential areas. In order to solve the problem of low accuracy in face recognition caused by distorting facial features due to monitoring camera angles and other external factors, this paper proposes the following optimization strategies in designing a face recognition network: firstly, a global graph convolution module is designed to encode facial features as graph nodes, and a multi-scale feature enhancement residual module is designed to extract facial keypoint features in conjunction with the global graph convolution module. Secondly, after obtaining facial keypoints, they are constructed as a directed graph structure, and graph attention mechanisms are used to enhance the representation power of graph features. Finally, tensor computations are performed on the graph features of two faces, and the aggregated features are extracted and discriminated by a fully connected layer to determine whether the individuals' identities are the same. Through various experimental tests, the network designed in this paper achieves an AUC index of 85.65% for facial keypoint localization on the 300W public dataset and 88.92% on a self-built dataset. In terms of face recognition accuracy, the proposed network achieves an accuracy of 83.41% on the IBUG public dataset and 96.74% on a self-built dataset. Experimental results demonstrate that the network designed in this paper exhibits high detection and recognition accuracy for faces in surveillance videos.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.