• Title/Summary/Keyword: Multi Channel Receiver

Search Result 255, Processing Time 0.022 seconds

Development of a Multi-Channel Ultrasonic Testing System for Automated Ultrasonic Pipe Inspection of Nuclear Power Plant (원전 배관 자동 초음파 검사를 위한 다채널 초음파 시스템 개발)

  • Lee, Hee-Jong;Cho, Chan-Hee;Cho, Hyun-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.2
    • /
    • pp.145-152
    • /
    • 2009
  • Currently almost all in-service-inspection techniques, applied in domestic nuclear power plants, are partial to field inspection technique. These kinds of techniques are related to managing nuclear power plants by the operation of foreign-produced inspection devices. There have been so many needsfor development of native in-service-inspection device because there is no native diagnosis device for nuclear power plant inspection yet in Korea. In this research, we developed several core techniques to make an automated ultrasonic pipe inspection system for nuclear power plants. A high performance multi-channel ultrasonic pulser/receiver module, an A/D converter module and a digital main CPU module were developed and the performance of the developed modules was verified. The S/N ratio, noise level and signal acquisition performance of the developed modules showed proper level as we designed in the beginning.

A Study on Delayed ACK Scheme for TCP Traffic in Ad-hoc Network (Ad-hoc 네트워크에서 지연 ACK를 이용한 TCP성능 향상에 관한 연구)

  • Park Kwang-Chae;Na Dong-Geon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.9
    • /
    • pp.1654-1662
    • /
    • 2006
  • An ad hoc network is multi-hop network composed of radio links. and the transmission quality of a radio link is more unstable than that of a wired circuit. Packet loss thus occurs frequently in an ad hoc network, and the consequent connection failure results in a severe deterioration of TCP performance. TCP performance also deteriorates because of the collision of data packets and ACK packets in the radio channel. In this paper we study to improve the performance of the Mobile Ad-hoc network by using Delayed ACK algorithm with our proposed ODA(Ordering-Delayed ACK) method. The proposed ODA algorithm increases the number of the data packets orderly at the receiver side which is going to be applied for the Mobile Ad-hoc network. We accomplished a computer simulation using NS-2. From the simulation results, we find the proposed ODA algorithm obviously enlarge the channel capacity and improve the network performance at the situation of multi-hop of ad-hoc network than the existing Delayed ACK algorithm.

MB-OFDM UWB Technology for Increasing Transmission Reach of Wireless Speaker Systems (차세대 무선 스피커 시스템의 전송거리 증대를 위한 MB-OFDM UWB 기술)

  • Kim, Do-Hoon;Wee, Jung-Wook;Lee, Hyeon-Seok;Lee, Chung-Yong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.48 no.6
    • /
    • pp.1-5
    • /
    • 2011
  • We present the Multi-band orthogonal frequency division multiplexing ultra-wideband (MB-OFDM UWB) technology for increasing the transmission reach of wireless speaker systems. The proposed scheme adopts the Reed-Solomon coding for preventing the random error perfectly and shows the SNR gain in low bit error rate (BER) especially. So, we can increase the maximum reach of MB-OFDM UWB technology since the receiver sensitivity is improved. The simulation environment includes most effects of realistic channel environments such as Additive White Gaussian Noise (AWGN), CM1 channel model, Sampling frequency offset (SFO), Carrier frequency offset (CFO) to improve the simulation accuracy. The simulation results show that the proposed scheme can give a maximum 2 dB SNR gain and increase the transmission reach up to 12.6m.

Transmitter Beamforming and Artificial Noise with Delayed Feedback: Secrecy Rate and Power Allocation

  • Yang, Yunchuan;Wang, Wenbo;Zhao, Hui;Zhao, Long
    • Journal of Communications and Networks
    • /
    • v.14 no.4
    • /
    • pp.374-384
    • /
    • 2012
  • Utilizing artificial noise (AN) is a good means to guarantee security against eavesdropping in a multi-inputmulti-output system, where the AN is designed to lie in the null space of the legitimate receiver's channel direction information (CDI). However, imperfect CDI will lead to noise leakage at the legitimate receiver and cause significant loss in the achievable secrecy rate. In this paper, we consider a delayed feedback system, and investigate the impact of delayed CDI on security by using a transmit beamforming and AN scheme. By exploiting the Gauss-Markov fading spectrum to model the feedback delay, we derive a closed-form expression of the upper bound on the secrecy rate loss, where $N_t$ = 2. For a moderate number of antennas where $N_t$ > 2, two special cases, based on the first-order statistics of the noise leakage and large number theory, are explored to approximate the respective upper bounds. In addition, to maintain a constant signal-to-interferenceplus-noise ratio degradation, we analyze the corresponding delay constraint. Furthermore, based on the obtained closed-form expression of the lower bound on the achievable secrecy rate, we investigate an optimal power allocation strategy between the information signal and the AN. The analytical and numerical results obtained based on first-order statistics can be regarded as a good approximation of the capacity that can be achieved at the legitimate receiver with a certain number of antennas, $N_t$. In addition, for a given delay, we show that optimal power allocation is not sensitive to the number of antennas in a high signal-to-noise ratio regime. The simulation results further indicate that the achievable secrecy rate with optimal power allocation can be improved significantly as compared to that with fixed power allocation. In addition, as the delay increases, the ratio of power allocated to the AN should be decreased to reduce the secrecy rate degradation.

Real-Time Frequency Interference Analysis System for Performance Degradation Analysis of MIMO-OFDM WLAN Due to WPAN Interferer (WPAN 간섭원에 의한 MIMO-OFDM WLAN의 성능 열화 분석을 위한 실시간 주파수 간섭 분석 시스템)

  • Yoon, Hyungoo;Park, Jin-Soo;Jang, Byung-Jun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.1
    • /
    • pp.88-91
    • /
    • 2016
  • In this paper, we have proposed the frequency interference analysis system using both LabVIEW and Universal Software Radio Peripheral(USRP) for performance degradation analysis of Multi Input Multi Output-Orthogonal Frequency Division Multiplexing(MIMO-OFDM) Wireless Local Area Network(WLAN) due to Wireless Local Area Network(WPAN) interferer. The proposed system consists of three part, i.e., victim, channel, and interferer. Both victim and interferer are implemented by LaBVIEW and a USRP board. Then interfering signal and additive white Gaussian noise are combined with the wanted signals of a victim. Measured Bit Error Rate(BER) at the victim receiver is compared with theoretical BER according to various signal to interference plus noise power ratio (SINR) values. Measured and theoretical BER curves show good agreement.

Multirate Multicarrier DS/CDMA with 2-Domain Spreading (2차원 확산을 사용하는 다중전송률 MC-DS/CDMA 시스템)

  • Kim, Nam-Sun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.4
    • /
    • pp.27-35
    • /
    • 2011
  • Multicarrier-Direct Sequence/Code Division Multiple Access(MC-DS/ CDMA) which is a combination of Orthogonal Frequency Division Multiplexing(OFDM) and DS/CDMA has been of significant interest as a means to take such advantages as bandwidth efficiency, high bit rate and robustness against multipath fading. In this paper we study a reduced-complexity multiuser detection aided multirate MC-DS/CDMA with time(T)-domain and frequency(F)-domain spreading. The one- dimensional orthogonal variable spreading factor(1D OVSF) code extracted from 2D OVSF code are used as a spreading code in T/F-domain. The proposed system will use code grouping interference cancellation(CGIC) receiver to reduce Multiuser Interference(MUI). The CGIC receiver uses code grouping by the correlation properties of 1D OVSF code and dose not requires the code information and activity of other user. The multiuser detector with CGIC receiver will be analyzed in Time- and Frequency-domain separately(jointly). The system performance is analytically derived in Additive White Gaussian Noise(AWGN) channel and we also compare the system performance between proposed system and T/F spreaded single(multi) rate multiuser MC-DS/CDMA system. In the computer simulation results, the proposed receiver of demonstrated huge performance improvement over conventional matched filter receiver.

Reliable Data Transmission Based on Erasure-resilient Code in Wireless Sensor Networks

  • Lei, Jian-Jun;Kwon, Gu-In
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.1
    • /
    • pp.62-77
    • /
    • 2010
  • Emerging applications with high data rates will need to transport bulk data reliably in wireless sensor networks. ARQ (Automatic Repeat request) or Forward Error Correction (FEC) code schemes can be used to provide reliable transmission in a sensor network. However, the naive ARQ approach drops the whole frame, even though there is a bit error in the frame and the FEC at the bit level scheme may require a highly complex method to adjust the amount of FEC redundancy. We propose a bulk data transmission scheme based on erasure-resilient code in this paper to overcome these inefficiencies. The sender fragments bulk data into many small blocks, encodes the blocks with LT codes and packages several such blocks into a frame. The receiver only drops the corrupted blocks (compared to the entire frame) and the original data can be reconstructed if sufficient error-free blocks are received. An incidental benefit is that the frame error rate (FER) becomes irrelevant to frame size (error recovery). A frame can therefore be sufficiently large to provide high utilization of the wireless channel bandwidth without sacrificing the effectiveness of error recovery. The scheme has been implemented as a new data link layer in TinyOS, and evaluated through experiments in a testbed of Zigbex motes. Results show single hop transmission throughput can be improved by at least 20% under typical wireless channel conditions. It also reduces the transmission time of a reasonable range of size files by more than 30%, compared to a frame ARQ scheme. The total number of bytes sent by all nodes in the multi-hop communication is reduced by more than 60% compared to the frame ARQ scheme.

Efficient System Level Simulation Method for MIMO-OFDM System (MIMO-OFDM 시스템을 위한 효율적인 시스템 레벨 시뮬레이션 기법)

  • Kim, Min-Hoon;Ko, Young-Chai;Jeon, Tae-Hyun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.4
    • /
    • pp.77-85
    • /
    • 2009
  • This paper proposes an efficient system level simulation method for MIMO-OFDM based system in the multi-cell environment. The proposed method analyzes effects of the cell structure, radio channel characteristics and user mobility. The user mobility effect on the system level performance is considered in both channel gain and distance. The receiver SINR calculation procedure is presented in the system which adopts MIMO-OFDM scheme under various system environments. This method can be flexibly extensible to various system environments and provides computationally efficient system level simulation technique which utilizes link level performance analysis. Extensive computer simulations results are presented to obtain the system performance in the various mobile cellular channels using the proposed method. Also this results are analyzed based on the packet error rate for different distances between the base station located in the center of the cell and the mobile user.

An Enhanced Frequency Synchronization Algorithm for 3GPP LTE FDD/TDD Dual Mode Downlink Receiver (3GPP LTE FDD/TDD 듀얼 모드 하향 링크 수신기를 위한 개선된 주파수 동기 알고리즘)

  • Shim, Myung-Jun;Jang, Jun-Hee;Choi, Hyung-Jin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.103-112
    • /
    • 2010
  • In this paper, we propose a coarse and fine frequency synchronization method which is suitable for the 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution) FDD(Frequency Division Duplexing) / TDD(Time Division Duplexing) dual mode system. In general, PSS(Primary Synchronization Signal) correlation based estimation method and CP(Cyclic Prefix) correlation based tracking loop are applied for coarse and fine frequency synchronization in 3GPP LTE OFDMA(Orthogonal Frequency Division Multiple Access) system, respectively. However, the conventional coarse frequency synchronization method has performance degradation caused by fading channel and squaring loss. Also, the conventional fine frequency synchronization method cannot guarantee stable operation in TDD mode because of signal power difference between uplink and downlink subframe. Therefore, in this paper, we propose enhanced coarse and fine frequency synchronization methods which can estimate more accurately in multi-path fading channel and high speed channel environments and has stable operation for TDD frame structure, respectively. By computer simulation, we show that the proposed methods outperform the conventional methods, and verify that the proposed frequency synchronization method can guarantee stable operation in 3GPP LTE FDD/TDD dual mode downlink receiver.

Multi-channel Transimpedance Amplifier Arrays in Short-Range LADAR Systems for Unmanned Vehicles (무인차량용 단거리 라이다 시스템을 위한 멀티채널 트랜스임피던스 증폭기 어레이)

  • Jang, Young Min;Kim, Seung Hoon;Cho, Sang Bock;Park, Sung Min
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.12
    • /
    • pp.40-48
    • /
    • 2013
  • This paper presents multi-channel transimpedance amplifier(TIA) arrays in short-range LADAR systems for unmanned vehicles, by using a 0.18um CMOS technology. Two $4{\times}4$ channel TIA arrays including a voltage-mode INV-TIA and a current-mode CG-TIA are introduced. First, the INV-TIA consists of a inverter stage with a feedback resistor and a CML output buffer with virtual ground so as to achieve low noise, low power, easy current control for gain and impedance. Second, the CG-TIA utilizes a bias from on-chip bandgap reference and exploits a source-follower for high-frequency peaking, yielding 1.26 times smaller chip area per channel than INV-TIA. Post-layout simulations demonstrate that the INV-TIA achieves 57.5-dB${\Omega}$ transimpedance gain, 340-MHz bandwidth, 3.7-pA/sqrt(Hz) average noise current spectral density, and 2.84mW power dissipation, whereas the CG-TIA obtains 54.5-dB${\Omega}$ transimpedance gain, 360-MHz bandwidth, 9.17-pA/sqrt(Hz) average noise current spectral density, and 4.24mW power dissipation. Yet, the pulse simulations reveal that the CG-TIA array shows better output pulses in the range of 200-500-Mb/s operations.