• Title/Summary/Keyword: Mucosal immune system

Search Result 47, Processing Time 0.023 seconds

USE OF PREBIOTICS, PROBIOTICS AND SYNBIOTICS IN CLINICAL IMMUNONUTRITION

  • Bengmark Stig
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2001.12a
    • /
    • pp.187-231
    • /
    • 2001
  • It is a recent observation that about 80 per cent of the body's immune system is localized in the gastrointestinal tract. This explains to a large extent why eating right is important for the modulation the immune response and prevention of disease. I addition it is increasingly recognized that the body has an important digestive system also in the lower gastrointestinal tract where numerous important substances are released by microbial enzymes and absorbed. Among these substances are short chain fatty acids, amino acids, various carbohydrates, polyamines, growth factors, coagulation factors, and many thousands of antioxidants, not only traditional vitamins but numerous flavonoids, carotenoids and similar plant- and vegetable produced antioxidants. Also consumption of health-promoting bacteria (probiotics) and vegetable fibres (prebiotics) from numerous sources are known to have strong health-promoting influence. It has been calculated that the intestine harbours about 300 000 genes, which is much more than the calculated about 60000 for the rest of the human body, indicating a till today totally unexpected metabolic activity in this part of the GI tract. There are seemingly several times more active enzymes in the intestine than in the rest of the body, ready to release hundred thousand or more of substances important for our health and well-being. In addition do the microbial cells produce signal molecules similar to cytokines but called bacteriokines and nitric oxide, with provide modulatory effects both on the mucosal cells, the mucosa-associated lymphoid system (MALT) and the rest of the immune system. Identification of various fermentation products, and often referred to as synbiotics, studies of their role in maintaining health and well-being should be a priority issue during the years to come.

  • PDF

Anti-metastatic Effect on Cancer cell and Immune System Activation by Orally Administered Boyanghwano-tang (보양환오탕(補陽還五湯) 경구투여 후 면역 활성화에 의한 암 전이 억제 효과)

  • Kim, Jin-Hwan;Hwang, Deok-Sang;Lee, Jin-Moo;Lee, Chang-Hoon;Lee, Kyung-Sub;Jang, Jun-Bok
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.2
    • /
    • pp.46-58
    • /
    • 2014
  • Objectives: This study was designed to investigate intestinal immune system activation and anti-metastatic effect on cancer cells by orally administered extracts of Boyanghwano-tang. Methods: To observe immunomodulating effects of Boyanghwano-tang on Peyer's patch cells, we measured cytokines GM-CSF, IL-4. In addition to observing effects of Boyanghwano-tang on hematopoiesis, we measured proliferation of bone marrow cells mediated by Peyer's patch cells in vitro. IgA induction activated in intestinal content and serum was measured to observe the effect of orally administered Boyanghwano-tang on mucosal immune system. After administering ovalbumin (OVA) with Boyanghwano-tang, Proliferation of Peyer's patch cell was measured to investigate gut immunostimulatory effect. Anti-metastatic experiments were conducted in vivo mouse model by using colon 26-M3.1 carcinoma cell. Results: The amounts of GM-CSF and IL-4 in the culture supernatant of Peyer's patch cells were significantly increased compared to the control group. The proliferation of bone marrow cell was significantly up-regualted with Boyanghwano-tang. These results indicate that oral administration of Boyanghwano-tang enhances the secretion of hematopoietic growth factors such as GM-CSF and IL-4 from Peyer's patch cells, and these cytokines also act on modulator of bone marrow cell proliferation. After orally administering OVA with Boyanghwano-tang, IgA induction and Proliferation of peyer's patch cell was up-regulated with Boyanghwano-tang. These results means orally administered Boyanghwano-tang activates intestinal immune system and has an inhibitory effect on tumor metastasis. In addition, We found that orally administered Boyanghwano-tang significantly inhibited tumor metastasis in vivo. Conclusions: Orally administered Boyanghwano-tang appears to have considerable activity on the anti-metastasis by activation of immune system.

Activation of Immune System & Antimetastatic Effects of Ojeok-san by Oral Administration (오적산(五積散) 경구투여에 의한 면역활성과 종양 전이 억제 효과)

  • Lee, Mi-Joo;Hwang, Deok-Sang;Lee, Jin-Moo;Jang, Jun-Bock;Lee, Kyung-Sub;Lee, Chang-Hoon
    • The Journal of Korean Obstetrics and Gynecology
    • /
    • v.27 no.2
    • /
    • pp.34-45
    • /
    • 2014
  • Objectives: This study was designed to investigate intestinal immune system activation and antimetastatic effect of Ojeok-san on cancer cells by oral administration. Methods: Cell viability of Ojeok-san was tested with colon 26-M3.1 carcinoma cells and Peyer's patch cells in vitro. Antimetastatic experiments were conducted in vivo mouse model by using colon 26-M3.1 carcinoma cell. To observe immunomodulating effects of Ojeok-san on Peyer's patch cells, we measured interleukin (IL)-4, GM-CSF. In addition to observing effects of Ojeok-san on hematopoiesis, we measured proliferation of bone marrow cells mediated by Peyer's patch cells in vitro. IgA induction activated in serum and intestinal content was measured to observe the effect of orally administered Ojeok-san on mucosal immune system. After administering Ovalbumin (OVA) with Ojeok-san, Proliferation of Peyer's patch cell was measured to investigate gut immunostimulatory effect. Results: in vitro cytotoxicity analysis, the inhibitory concentration $(IC)_{50}$ of the colon 26-M3.1 carcinoma cell was $890{\mu}g/ml$. $IC_{50}$ of the Peyer's patch cells with LPS was $990{\mu}g/ml$. We found that orally administered Ojeok-san significantly inhibited tumor metastasis in vivo. In addition, the amounts of IL-4 and GM-CSF in the culture supernatant of Peyer's patch cells were significantly increased compared to the control group. The proliferation of bone marrow cell was significantly up-regulated with Ojeok-san. These results indicate that oral administration of Ojeok-san enhances the secretion of hematopoietic growth factors such as GM-CSF and IL-4 from Peyer's patch cells, and these cytokines also act on modulator of bone marrow cell proliferation. After orally administering Ovalbumin (OVA) with Ojeok-san, IgA induction and Proliferation of peyer's patch cell was up-regulated with Ojeok-san. These results means orally administered Ojeok-san activates intestinal immune system and has an inhibitory effect on tumor metastasis. Conclusions: Orally administered Ojeok-san appears to have considerable activity on the anti-metastasis by activation of immune system.

Analysis of Polymeric Immunoglobulin Receptor Expression in Olive Flounder (Paralichthys olivaceus) against Viral Hemorrhagic Septicemia Virus

  • Kyung-Hee Kim;Sulhye Park;Jong-Won Park;Minhwan Jeong;Julan Kim;Hyejin Kim;Jeong-Ho Lee;Dain Lee
    • Development and Reproduction
    • /
    • v.27 no.2
    • /
    • pp.67-75
    • /
    • 2023
  • Polymeric immunoglobulin receptor (pIgR) mediates the transfer of polymeric immunoglobulin to protect organisms and is one of the most important mucosal effectors. In this study, the developmental stage- and tissue-specific expression of pIgR were observed before virus inoculation in olive flounder. pIgR was gradually expressed until the formation of immune tissue, exhibiting high expression in the late juvenile period; thereafter, pIgR expression gradually decreased and exhibited high expression in the spleen and skin. Moreover, pIgR expression after viral hemorrhagic septicemia virus infection was high in the kidney and spleen tissues at high density and low at low density. The results of this study can provide a basis for future studies on breeding density, virus expression, and immune system studies in fish.

The Histologic Findings and the Expression of Laminin in the Mucosa of the Rat Trachea During (백서 기관 점막의$SO_2$ 노출 후 회복과정의 조직학적 관찰 및 laminin의 발현에 관한 연구)

  • Lee, Hyung-Seok;Tae, Kyung;Cho, Seok-Hyun;Han, Jang-Hee;Jeong, Jin-Suck
    • Korean Journal of Bronchoesophagology
    • /
    • v.8 no.1
    • /
    • pp.29-34
    • /
    • 2002
  • Background and Objectives : Sulfur dioxide gas is one of the major airborne Pollutants noxious to human in industrialized countries. The most vulnerable areas in the human respiratory system were the trachea and main bronchi and a gradient of decreasing damage was observed in the peripheral tracheobronchial tree. Induced functional alteration was increased mucosal permeability, and morphological changes were epithelial sloughing, intracellular edema, mitochondrial swelling, widened intercellular spaces, and ciliary cytoplamic extrusions. The laminins are a family of extracellular matrix glycoproteins localized in the basement membrane. Their primary role is cell-matrix attachment, but many additional biologic activities, including Promoting cell growth and migration, tumor growth and metastasis, wound repair, and graft survival, have been demonstrated. Materials and Methods : Histologic changes and expression of laminin in tracheal mucosa sacrificed at 1 day, 2 day, 3 day, 1 week, 2 weeks, and 3 weeks after continued SO2 exposure of 250 ppm for 30 minutes a day(to 7week) were studied in rats. In this study, mild immune reaction for laminin was noted at the apical cytoplasm of epithelial cells and basement membrane one day after a 7 week $SO_2$ exposure. The cilia and nucleoi of epithelial cells were normal and no immune reaction was noted in Goblet cells. The lamina propria of the tracheal tissue was infiltrated by monocytes and lymphocytes. Results : At 24 hours after exposure, all tracheal cells except Goblet cells revealed a mild immune reaction for laminin. No immune reactions were noted in the basement membrane. At 72 hours after exposure, mild or moderate immune reactions for laminin was seen in the tracheal cell cytoplasm. Irregular faint immune reaction for laminin was noted in the basement membrane. At 1 week after exposure, strong immune reaction for laminin was detected over all tracheal cells, and the basement membrane was seen clearly. At 2~3 weeks after exposure, strong immune reaction for laminin was seen in all tracheal epithelial cells except Goblet cells and a mild immune reaction was partly revealed in the basement membrane. Conclusion : Our study suggests that 502 produces histologic damage on the tracheal mucosa. Longer duration after exposure of $SO_2$ makes more progressive healing on the tracheal mucosa and increased immunoreactivity for laminin.

  • PDF

Research for Intestinal Mucosal Immunity Induced by Salmonella enteritidis Infection (Salmonella enteritidis 감염에 의해 장내 점막에서 유도되는 면역반응에 관한 연구)

  • Lee, Kang-Hee;Lee, Se-Hui;Yang, Jin-Young
    • Journal of Life Science
    • /
    • v.32 no.1
    • /
    • pp.36-43
    • /
    • 2022
  • Mucosal immunity is a well-designed defense system that builds precise and dynamic relationships against pathogens, and the gastrointestinal tract is the most important organ with this system, acting as a guardian at the forefront of its activity. Salmonella spp. cause food poisoning, entering the body orally and mainly invading the Peyer's patches of the small intestine. Although Salmonella strains share similar mechanisms for inducing innate immunity, different serotypes may have different effects on the intestinal mucosa due to host specificities and pathogenicity. In this study, we evaluated the effects of Salmonella enteritidis infections in mouse intestine and observed significantly reduced dose-dependent survival rates in a challenge test. Flow cytometry data showed no significant differences in intestinal immune cell populations, although histology indicated increased mucin production and decreased goblet cell counts in the Salmonella-treated groups. Furthermore, Claudin expression was significantly decreased in the samples with Salmonella. To investigate the relationship between S. enteritidis infection and inflammatory response, dextran sodium sulfate (DSS) was administered after infection and the results indicate lower survival rate after DSS treatment. In conclusion, we were able to identify the optimal concentration of S. enteritidis to modulate the intestinal mucosal immunity of mice and inflammatory response.

Distribution and differential expression of microRNAs in the intestinal mucosal layer of necrotic enteritis induced Fayoumi chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Ban, Jihye;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.7
    • /
    • pp.1037-1047
    • /
    • 2017
  • Objective: Despite an increasing number of investigations into the pathophysiology of necrotic enteritis (NE) disease, etiology of NE-associated diseases, and gene expression profiling of NE-affected tissues, the microRNA (miRNA) profiles of NE-affected poultry have been poorly studied. The aim of this study was to induce NE disease in the genetically disparate Fayoumi chicken lines, and to perform non-coding RNA sequencing in the intestinal mucosal layer. Methods: NE disease was induced in the Fayoumi chicken lines (M5.1 and M15.2), and non-coding RNA sequencing was performed in the intestinal mucosal layer of both NE-affected and uninfected chickens to examine the differential expression of miRNAs. Next, quantitative real-time polymerase chain reaction (real-time qPCR) was performed to further examine four miRNAs that showed the highest fold differences. Finally, bioinformatics analyses were performed to examine the four miRNAs target genes involvement in the signaling pathways, and to examine their interaction. Results: According to non-coding RNA sequencing, total 50 upregulated miRNAs and 26 downregulated miRNAs were detected in the NE-induced M5.1 chickens. While 32 upregulated miRNAs and 11 downregulated miRNAs were detected in the NE-induced M15.2 chickens. Results of real-time qPCR analysis on the four miRNAs (gga-miR-9-5p, gga-miR-20b-5p, ggamiR-196-5p, and gga-let-7d) were mostly correlated with the results of RNAseq. Overall, ggamiR-20b-5p was significantly downregulated in the NE-induced M5.1 chickens and this was associated with the upregulation of its top-ranking target gene, mitogen-activated protein kinase, kinase 2. Further bioinformatics analyses revealed that 45 of the gene targets of gga-miR-20b-5p were involved in signal transduction and immune system-related pathways, and 35 of these targets were predicted to interact with each other. Conclusion: Our study is a novel report of miRNA expression in Fayoumi chickens, and could be very useful in understanding the role of differentially expressed miRNAs in a NE disease model.

Isolation of Polysaccharides Modulating Intestinal Immune System and Single Oral Dose Toxicity Test in Astragalus membranaceus Abovegroud Parts (황기 지상부로부터 장관면역 활성 다당체의 분리 및 단회 경구 투여 독성시험)

  • Choi, Ri Na;Park, Yeong Chul;Lee, Ji Sun;Kim, Jung Woo;Kim, Jong Bong;Cheoi, Yu Soon;Kim, Kwang Ki;Lee, Jae Geun;Yu, Chang Yeon;Kim, Seung Hyn;Chung, Ill Min;Kim, Jae Kwang;Lim, Jung Dae
    • Korean Journal of Medicinal Crop Science
    • /
    • v.22 no.4
    • /
    • pp.276-288
    • /
    • 2014
  • The six polysaccharide fractions were prepared by chromatographic procedure from the hot water extracts of the aboveground parts of Astragalus membranaceus. These six polysaccharides from aboveground parts of Astragalus membranaceus Bunge were tested for gut-mucosal immune activity and acute toxicity. In a view of molecular weight, the six fractions were estimated to be 75000, 88000, 129000 and 345000 Da, respectively. Component sugar analysis indicated that these fractions were mainly consisted of galactose (46.3 ~ 11.8%) and arabinose (35.4 ~ 9.9%) in addition to glucose, rhamnose, fucose, arabinose, xylose, mannose, glucuronic acid and galacturonic acid. Among the six major purified polysaccharides, AMA-1-b-PS2 showed highest bone merrow cell proliferation and lymphocyte of Peyer's patch stimulating activity. It may be concluded that intestinal immune system modulating activity of aboveground parts from Astragalus membranaceus Bunge is caused by polysaccharides having a polygalacturonan moiety with neutral sugars such as arabinose and galactose. In single oral dose toxicity study, no differences were observed between control and treated groups in clinical signs. The results indicated that lethal dose 50 ($LD_{50}$) of water extracts from Astragalus membranaceus-aboveground parts was found to be higher than 5000 mg/kg/day in this experiment. From the above results, we may suggest that Astragalus membranaceus-aboveground parts might have useful as a safe material for functional food and pharmaceutics.

Construction of a live attenuated Salmonella strain expressing FanC protein to prevent bovine enterotoxigenic Escherichia coli and evaluation of its immunogenicity in mice

  • Won, Gayeon;Kim, Hee Jung;Lee, John Hwa
    • Korean Journal of Veterinary Research
    • /
    • v.57 no.1
    • /
    • pp.9-15
    • /
    • 2017
  • To construct a novel vaccine candidate against bovine enterotoxigenic Escherichia coli (ETEC), FanC, the major subunit of K99 fimbriae adhesion, was inserted into secretion plasmid pYA3560 containing a ${\beta}-lactamase$ secretion system. This was then transformed into ${\Delta}asd$ ${\Delta}crp$ Salmonella (S.) Typhimurium and designated as JOL950. Secretion of recombinant fanC fimbrial antigens was confirmed by immunoblot analysis. Groups of mice were inoculated with single or double doses of JOL950. Another group was used as a negative control. Compared to control mice, all immunized mice had significantly higher levels (p < 0.05) of serum immunoglobulin (Ig)G, and secretory IgA against FanC. The IgG2a and IgG1 titer assays revealed that immunization highly induced IgG2a compared to that of IgG1, indicating that T helper-1- related cell-mediated immune responses may be elicited by JOL950. The results show that both systemic and mucosal immunities against selected fimbrial antigens of bovine ETEC expressed by a live attenuated S. Typhimurium strain are prominently produced in mice immunized with JOL950 via an oral route.

Effect of stocking density and alpha-lipoic acid on the growth performance, physiological and oxidative stress and immune response of broilers

  • Li, Wenjia;Wei, Fengxian;Xu, Bin;Sun, Quanyou;Deng, Wen;Ma, Huihui;Bai, Jie;Li, Shaoyu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1914-1922
    • /
    • 2019
  • Objective: The study was conducted to evaluate the effect of stocking density and alphalipoic acid (ALA) on the growth performance, feed utilization, carcass traits, antioxidative ability and immune response of broilers. Methods: A total of 1,530 22-day-old male broilers (Arbor Acres) with comparable body weights ($731.92{\pm}5.26$) were placed into 18 cages ($2.46{\times}2.02m$) in groups of 75 birds ($15birds/m^2$, $37.5kg/m^2$; low stocking density [LD]), 90 birds ($18birds/m^2$, $45.0kg/m^2$; high stocking density [HD]) and 90 birds with 300 mg/kg ALA added to the basal diet ($18birds/m^2$, $45.0kg/m^2$; HD+ALA, high stocking density+${\alpha}$-lipoic acid); each treatment was represented by 6 replicates. The experimental period was 3 weeks. Results: The results showed that the high stocking density regimen resulted in a decreased growth, feed conversion ratio, carcass weight, thigh yield and bursa weight relative to body weight (p<0.05) on d 42. The abdominal fat yield in the HD+ALA group was lower (p = 0.031) than that of the LD group at 42 d. The superoxide dismutase and glutathione peroxidase activities in serum were increased, and malondialdehyde content decreased after adding ALA product (p<0.05) on d 42. Additionally, the serum concentrations of immunoglobulin A (IgA) and IgG were decreased (p<0.05) and the level of diamine oxidase was higher (p<0.01) in the HD group on d 42. Conclusion: The high stocking density significantly decreased broiler growth performance, feed utilization and carcass traits, increased physiological and oxidative stress and induced intestinal mucosal injury. The supplementation of ALA product in broiler diet at 300 mg/kg may reduce the adverse effects of high stocking density-mediated stress by maintaining the antioxidant system and humoral immune system.