• Title/Summary/Keyword: Moving-Target Defense

Search Result 75, Processing Time 0.028 seconds

Design and Development of Shaker for Acceleration test of Gimbal (김발의 가속도 시험용 Shaker의 설계 및 개발)

  • Yoon, Jae-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.1
    • /
    • pp.147-153
    • /
    • 2001
  • This paper proposes a shaker system design for acceleration test of gimbal. Main reason of shaker system design is to give acceleration to the gimbal, which is moving and tracking the target on the tracking test equipment. The shaker system is mounted on the tracking test equipment. It uses the scotch yoke mechanism to have the constant movement in return. The Scotch yoke mechanism changes the rotational movement of constant velocity to simple harmonic motion.

  • PDF

MTD (Moving Target Detection) with Preposition Hash Table for Security of Drone Network (드론 네트워크 보안을 위한 해시표 대체 방식의 능동 방어 기법)

  • Leem, Sungmin;Lee, Minwoo;Lim, Jaesung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.4
    • /
    • pp.477-485
    • /
    • 2019
  • As the drones industry evolved, the security of the drone network has been important. In this paper, MTD (Moving Target Detection) technique is applied to the drone network for improving security. The existing MTD scheme has a risk that the hash value is exposed during the wireless communication process, and it is restricted to apply the one-to-many network. Therefore, we proposed PHT (Preposition Hash Table) scheme to prevent exposure of hash values during wireless communication. By reducing the risk of cryptographic key exposure, the use time of the cryptographic key can be extended and the security of the drone network will be improved. In addition, the cryptographic key exchange is not performed during flight, it is advantageous to apply PHT for a swarm drone network. Through simulation, we confirmed that the proposed scheme can contribute to the security of the drone network.

Quasi-Optimal Linear Recursive DOA Tracking of Moving Acoustic Source for Cognitive Robot Auditory System (인지로봇 청각시스템을 위한 의사최적 이동음원 도래각 추적 필터)

  • Han, Seul-Ki;Ra, Won-Sang;Whang, Ick-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.211-217
    • /
    • 2011
  • This paper proposes a quasi-optimal linear DOA (Direction-of-Arrival) estimator which is necessary for the development of a real-time robot auditory system tracking moving acoustic source. It is well known that the use of conventional nonlinear filtering schemes may result in the severe performance degradation of DOA estimation and not be preferable for real-time implementation. These are mainly due to the inherent nonlinearity of the acoustic signal model used for DOA estimation. This motivates us to consider a new uncertain linear acoustic signal model based on the linear prediction relation of a noisy sinusoid. Using the suggested measurement model, it is shown that the resultant DOA estimation problem is cast into the NCRKF (Non-Conservative Robust Kalman Filtering) problem [12]. NCRKF-based DOA estimator provides reliable DOA estimates of a fast moving acoustic source in spite of using the noise-corrupted measurement matrix in the filter recursion and, as well, it is suitable for real-time implementation because of its linear recursive filter structure. The computational efficiency and DOA estimation performance of the proposed method are evaluated through the computer simulations.

Adaptive Nulling Algorithm to Reduce the Main-Beam Distortion in Single-Port Phased Array Antenna (단일포트 위상배열안테나에서 주빔 왜곡 현상을 줄이기 위한 적응형 널링 알고리즘)

  • Seo, Jongwoo;Park, Dongchul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.9
    • /
    • pp.808-816
    • /
    • 2016
  • In this paper, a new technique and cost function which can be to classify jamming signal and target signal from the spectral distribution of received signal in order to minimize the main beam distortion of target signal and to form nulls in the direction of jamming signal in array antennas of single port system is proposed. The proposed cost function is applied to the adaptive algorithm which has the fast convergence and stable nulling performance through the combination of the PSO(Particle Swam Optimization) algorithm and the gradient-based perturbation algorithm, which shows stable nulling performance adaptively even under the moving jamming signal where the incident direction of the jamming signal is changing with time.

Malicious Attack Success Probability on the Change of Vulnerable Surfaces in MTD-SDR System (MTD-SDR 시스템의 취약요소 변경에 따른 악의적 공격 성공 확률)

  • Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.5
    • /
    • pp.55-62
    • /
    • 2018
  • The MTD-based approach changes various operating parameters dynamically so that the vulnerability of the system can be protected from the malicious attack. In this paper, random/serial scanning/jamming attack success probabilities have been mathematically analyzed and verified through simulation to improve the security of the wireless communication systems in which the MTD-SDR technologies are applied. As a result, for random scanning attacks, attack success probability increases as the change period of transmission channel increases, while for random jamming attacks there is no change. The attack success probability patterns for serial attacks are similar to those of random attacks, but when the change period of transmission channel approaches to the total number of transmission channels, the success probability of serial attack is getting greater than that of random attack, up to twice in jamming attacks and up to 36% in scanning attacks.

A Study on the Impact of Applying Network Address Mutation Technology within the Network Protection System (네트워크 보호체계에서 네트워크 주소변이 기술 적용에 대한 영향성 연구)

  • Suwon Lee;Seyoung Hwang;SeukGue Hong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.939-946
    • /
    • 2023
  • In the hyper-connected network, which network equipment is diverse and network structure is complex, the attack surface has also increased. In this environment, MTD(Moving Target Defense) technology is being researched as a method to fundamentally defend against cyber attacks by actively changing the attack surface. network-based MTD technologies are being widely studied. However, in order for network address mutation technology to be applied within the existing fixed IP-based system, research is needed to determine what impact it will have. In this paper, we studied the impact of applying network address mutation technology to the existing network protection system. As a result of the study, factors to be considered when firewall, NAC, IPS, and network address mutation technologies are operated together were derived, and elements that must be managed in network address mutation technology for interoperability with the network analysis system were suggested.

Random Forest Method and Simulation-based Effect Analysis for Real-time Target Re-designation in Missile Flight (유도탄의 실시간 표적 재지정을 위한 랜덤 포레스트 기법과 시뮬레이션 기반 효과 분석)

  • Lee, Han-Kang;Jang, Jae-Yeon;Ahn, Jae-Min;Kim, Chang-Ouk
    • Journal of the Korea Society for Simulation
    • /
    • v.27 no.2
    • /
    • pp.35-48
    • /
    • 2018
  • The study of air defense against North Korean tactical ballistic missiles (TBM) should consider the rapidly changing battlefield environment. The study for target re-designation for intercept missiles enables effective operation of friendly defensive assets as well as responses to dynamic battlefield. The researches that have been conducted so far do not represent real-time dynamic battlefield situation because the hit probability for the TBM, which plays an important role in the decision making process, is fixed. Therefore, this study proposes a target re-designation algorithm that makes decision based on hit probability which considers real-time field environment. The proposed method contains a trajectory prediction model that predicts the expected trajectory of the TBM from the current position and velocity information by using random forest and moving window. The predicted hit probability can be calculated through the trajectory prediction model and the simulator of the intercept missile, and the calculated hit probability becomes the decision criterion of the target re-designation algorithm for the missile. In the experiment, the validity of the methodology used in the TBM trajectory prediction model was verified and the superiority of using the hit probability through the proposed model in the target re-designation decision making process was validated.

A Path Planning to Maximize Survivability for Unmanned Aerial Vehicle by using $A^*PS$-PGA ($A^*PS$-PGA를 이용한 무인 항공기 생존성 극대화 경로계획)

  • Kim, Ki-Tae;Jeon, Geon-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.34 no.3
    • /
    • pp.24-34
    • /
    • 2011
  • An Unmanned Aerial Vehicle (UAV) is a powered pilotless aircraft, which is controlled remotely or autonomously. UAVs are an attractive alternative for many scientific and military organizations. UAVs can perform operations that are considered to be risky or uninhabitable for human. UA V s are currently employed in many military missions such as reconnaissance, surveillance, enemy radar jamming, decoying, suppression of enemy air defense (SEAD), fixed and moving target attack, and air-to-air combat. UAVs also are employed in a number of civilian applications such as monitoring ozone depletion, inclement weather, traffic congestion, and taking images of dangerous territory. For accomplishing the UAV's missions, guarantee of survivability should be preceded. The main objective of this study is to suggest a mathematical programming model and a $A^*PS$-PGA (A-star with Post Smoothing-Parallel Genetic Algorithm) for an UAV's path planning to maximize survivability. A mathematical programming model is composed by using MRPP (Most Reliable Path Problem) and TSP (Traveling Salesman Problem). A path planning algorithm for UAV is applied by transforming MRPP into SPP (Shortest Path Problem).

Simulation Study on Search Strategies for the Reconnaissance Drone (정찰 드론의 탐색 경로에 대한 시뮬레이션 연구)

  • Choi, Min Woo;Cho, Namsuk
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.1
    • /
    • pp.23-39
    • /
    • 2019
  • The use of drone-bots is demanded in times regarding the reduction of military force, the spread of the life-oriented thought, and the use of innovative technology in the defense through the fourth industrial revolution. Especially, the drone's surveillance and reconnaissance are expected to play a big role in the future battlefield. However, there are not many cases in which the concept of operation is studied scientifically. In this study, We propose search algorithms for reconnaissance drone through simulation analysis. In the simulation, the drone and target move linearly in continuous space, and the target is moving adopting the Random-walk concept to reflect the uncertainty of the battlefield. The research investigates the effectiveness of existing search methods such as Parallel and Spiral Search. We analyze the probabilistic analysis for detector radius and the speed on the detection probability. In particular, the new detection algorithms those can be used when an enemy moves toward a specific goal, PS (Probability Search) and HS (Hamiltonian Search), are introduced. The results of this study will have applicability on planning the path for the reconnaissance operations using drone-bots.

Extended Target State Vector Estimation using AKF (적응형 칼만 필터를 이용한 확장 표적의 상태벡터 추정 기법)

  • Cho, Doo-Hyun;Choi, Han-Lim;Lee, Jin-Ik;Jeong, Ki-Hwan;Go, Il-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.507-515
    • /
    • 2015
  • This paper proposes a filtering method for effective state vector estimation of highly maneuvering target. It is needed to hit the point called 'sweet spot' to increase the kill probability in missile interception. In paper, a filtering method estimates the length of a moving target tracked by a frequency modulated continuous wave (FMCW) radar. High resolution range profiles (HRRPs) is generated from the radar echo signal and then it's integrated into proposed filtering method. To simulate the radar measurement which is close to real, the study on the properties of scattering point of the missile-like target has been conducted with ISAR image for different angle. Also, it is hard to track the target efficiently with existing Kalman filters which has fixed measurement noise covariance matrix R. Therefore the proposed method continuously updates the covariance matrix R with sensor measurements and tracks the target. Numerical simulations on the proposed method shows reliable results under reasonable assumptions on the missile interception scenario.