• Title/Summary/Keyword: Moving robot

Search Result 724, Processing Time 0.025 seconds

A Study on the Deflection of Roller Axis of an Improved Mecanum Wheel Using the Castigliano Theorem (카스틸리아노 정리를 이용한 개선된 메카넘 휠의 롤러 축의 처짐에 대한 연구)

  • Hwang, Hui-Geon;Chung, Won-Jee;Kim, Dae-Young
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.61-66
    • /
    • 2020
  • For simple and repetitive transport tasks in limited spaces such as in factories, it is more efficient to use mobile robots instead of human workers. For this reason, the reliance on mobile robots is increasing due to the increased implementation of smart factories. Currently, the structural design of the Mecanum wheel is required to ensure the stability of the moving robot since it is used for the transport of not only small products but also large products. In this paper, to improve the stability and durability of the Mecanum wheel, ways to improve the structure of the Mecanum wheel are presented. Then, using the Castigliano theorem, the structural stability is reviewed through the deflection on existing and improved structures.

Development of Fuzzy Controller for Camera Autotracking System (원격 감시카메라 자동추적시스템의 퍼지제어기 개발에 관한 연구)

  • 윤지섭;박영수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.8
    • /
    • pp.2062-2072
    • /
    • 1994
  • This paper presents the development of a fuzzy controller for driving camera pan/tilt device so that the camera's viewing direction can automatically track a moving object. To achieve computational efficiency a non-contact type displacement follower is used as a feedback sensor instead of a vision camera. The displacement follower, however, is extremely sensitive to object's lighting condition and results in unstable response at high speed. To this end, a fuzzy controller is developed in such a way to provide stable tracking performance at high speed where the sensory signal is subjected to intermittant disturbances of large magnitude. The test result shows stable tracking response even for high speed and non-uniform lighting condition. The resulting camera autotracking system can be adopted as an effective tool for visual transfer in the context of teleoperation and autonomous robotics.

A Study on the Application of Arc Sensor to FCA W for The Fillet Plates of Shipbuilding (조선용 Fillet 부재에 대한 FCAW용 아크센서의 적용연구)

  • 박창규;최만수;김재훈;임필주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.1138-1141
    • /
    • 1995
  • An arc sensor for seam tracking is developed to automate sub-assembly welding in shipbuilding. We utilize a moving average method, which produces an effect of low-pass filter, to generate the position compensation. Therefore the sensor is able to modify the path of the weld seam in real time. By simplifying the compension process, the tunning time is reduced so that operators react quickly. It turns out that this sensor is highly reliable and it is installed and being used in SHI Keoje shipbuilding yard.

  • PDF

Development of DNA Chip Microarrayer

  • Yoon, Sung-Ho;Choi, Jong-Gil;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2000
  • A microarrayer system was developed mainly for manufacturing DNA chips. The 3-axis robot was designed to automatically collect samples from 96-or 384-well microtiter plates using up to 16 simultaneously moving pens and to deposit them on a surface-modified slide glass. This is followed by a wash/dry operation in a clean station. The cycle is repeated with a new set of samples, This system can deposit cDNA or oligonucleotides with spot intervals of $150{\;}\mu\textrm{m}$ and the spot size of $80\mu\textrm{m}$, thus allowing a high density DNA chip containing about 5,000 spots per $\textrm{cm}^2$. The entire procedure is controlled by the Visual C++ program that was written in our laboratory by using a personal computer with Pentium 100 CPU.

  • PDF

A trajectory prediction of human reach (Reach 동작예측 모델의 개발)

  • 최재호;정의승
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1995.04a
    • /
    • pp.787-796
    • /
    • 1995
  • A man model is a useful design tool for the evaluation of man machine systems and products. An arm reach trajectory prediction for such a model will be specifically useful to present human activities and, consequently, could increase the accuracy and reality of the evaluation. In this study, a three-dimensional reach trajectory prediction model was developed using an inverse kinematics technique. The upper body was modeled as a four link open kinematic chain with seven degrees of freedom. The Resolved Motion Method used for the robot kinematics problem was used to predict the joint movements. The cost function of the perceived discomfort developed using the central composite design was also used as a performance function. This model predicts the posture by moving the joints to minimize the discomfort on the constraint of the end effector velocity directed to a target point. The results of the pairwise t-test showed that all the joint coordinates except the shoulder joint's showed statistically no differences at .alpha. = 0.01. The reach trajectory prediction model developed in this study was found to accurately simulate human arm reach trajectory and the model will help understand the human arm reach movement.

  • PDF

Time-optimal Trajectory Planning for a Robot System under Torque and Impulse Constraints

  • Cho, Bang-Hyun;Choi, Byoung-Suk;Lee, Jang-Myung
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.1
    • /
    • pp.10-16
    • /
    • 2006
  • In this paper, moving a fragile object from an initial point to a specific location in the minimum time without damage is studied. In order to achieve this goal, initially, the maximum acceleration and velocity ranges are specified. These ranges can be dynamically generate on the planned path by the manipulator. The path can be altered by considering the geometrical constraints. Later, considering the impulsive force constraint on the object, the range of maximum acceleration and velocity are obtained to preserve object safety while the manipulator is carrying it along the curved path. Finally, a time-optimal trajectory is planned within the maximum allowable range of acceleration and velocity. This time-optimal trajectory planning can be applied to real applications and is suitable for both continuous and discrete paths.

탄성로봇 위치제어 실험을 위한 제어기법의 비교

  • 강준원;권혁조;오재윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.224-229
    • /
    • 1997
  • This paper compares the control techniques for position control experiments of a fixible robot moving in a vertical plane. The flexible manipulator is modeled as an Euler-beroulli beam. Elastic deformantion is representedusing the assumed model method. A comparison function which satisfies all geometric and natural boundary conditions of a cantilever beam with an end mass is used as an assumed mode shape. Lagrange's equation is utilized for the development of a discretized model. Control schemes are developed using PID control,pole placement control and discrete Linear Quadratic Regulater(LQQ). The effectiveness of the developed control schems are compared using computer simulation in view of practical experiment. The simulation results show that PID control is very effective in practical implementation.

A Study on Implementation of Zigbee Module based on CC520 (CC2520 기반의 지그비 모듈 구현에 대한 연구)

  • Moon, Yong-Seon;Bae, Young-Chul;Roh, Sang-Hyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.6
    • /
    • pp.664-671
    • /
    • 2010
  • In this paper, we developed a Zigbee module based on CC2520 which is possible to construct the mesh network and also support to Zigbee Pro standard as a preceding research of autonomous moving of mobile robot using Zigbee. After manufacturing the Zigbee module, we selected antenna to fit Zigbee wireless frequency band using network analyze as means performance improvement. We also carry out an impedance matching of Zigbee module, extend the possible distance of two-way wireless communication and ensure the safety of communication.

Multi-Object Tracking using the Color-Based Particle Filter in ISpace with Distributed Sensor Network

  • Jin, Tae-Seok;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.1
    • /
    • pp.46-51
    • /
    • 2005
  • Intelligent Space(ISpace) is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. And the article presents the integration of color distributions into particle filtering. Particle filters provide a robust tracking framework under ambiguity conditions. We propose to track the moving objects by generating hypotheses not in the image plan but on the top-view reconstruction of the scene. Comparative results on real video sequences show the advantage of our method for multi-object tracking. Simulations are carried out to evaluate the proposed performance. Also, the method is applied to the intelligent environment and its performance is verified by the experiments.

Collision-free trajectory planning for dual robot arms

  • Chong, Nak-Young;Choi, Dong-Hoon;Suh, Il-Hong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.951-957
    • /
    • 1988
  • A collision-free trajectory planning algorithm is proposed to optimally coordinate two robots working in a common 3-D workspace. Each link of the two robots is modeled as a line segment and by their motion priority, one of the two robots is chosen as the master and the other the slave. And the one-step-ahead minimum distance between the two robots is computed by moving the master to the next location on its specified trajectory. Then the nominal trajectory of the slave is modified such that the distance between the next locations of the master and the slave must be larger than a prespecified allowable minimum distance. Here the weighted sum of the trajectory error and the joint motions of the slave is minimized by using the linear programming technique under the constraints that joint angle and velocity limits are not violated. To show the validity of the proposed algorithm, a numerical example is illustrated by employing a two dof's and a three dof's planar robots.

  • PDF