• 제목/요약/키워드: Moving particle simulation (MPS) method

검색결과 31건 처리시간 0.078초

Failure simulation of ice beam using a fully Lagrangian particle method

  • Ren, Di;Park, Jong-Chun;Hwang, Sung-Chul;Jeong, Seong-Yeob;Kim, Hyun-Soo
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.639-647
    • /
    • 2019
  • A realistic numerical simulation technology using a Lagrangian Fluid-Structure Interaction (FSI) model was combined with a fracture algorithm to predict the fluid-ice-structure interaction. The failure of ice was modeled as the tensile fracture of elastic material by applying a novel FSI model based on the Moving Particle Semi-implicit (MPS) method. To verify the developed fracture algorithm, a series of numerical simulations for 3-point bending tests with an ice beam were performed and compared with the experiments carried out in an ice room. For application of the developed FSI model, a dropping water droplet hitting a cantilever ice beam was simulated with and without the fracture algorithm. The simulation showed that the effects of fracture which can occur in the process of a FSI simulation can be studied.

파손된 탱크의 기름 유출량 산정을 위한 2차원 입자법 시뮬레이션 (Prediction of Oil Amount Leaked from Damaged Tank Using 2-dimensional Particle Simulation)

  • 남정우;황성철;박종천
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.278-285
    • /
    • 2011
  • In the present study, the numerical prediction of the oil amount leaked from the hole of a damaged tank is investigated using the improved MPS (Moving Particle Semi-implicit) method, which was originally proposed by Koshizuka and Oka (1996) for incompressible flow. The governing equations, which consist of the continuity and Navier-Stokes equations, are solved by Lagrangian moving particles, and all terms expressed by differential operators should be replaced by the particle interaction models based on a Kernel function. The simulation results are validated though the comparison with the analytic solution based on Torricelli's equilibrium relation. Furthermore, a series of numerical simulations under the various conditions are performed in order to estimate more accurately the initial amount of leaked oil.

  • PDF

유체-구조 상호연성 해석을 위한 입자법 시뮬레이션 기술 개발 (Development of Particle Simulation Method for Analysis of Fluid-Structure Interaction Problems)

  • 황성철;박종천;송창용;김영훈
    • 한국해양공학회지
    • /
    • 제27권2호
    • /
    • pp.53-58
    • /
    • 2013
  • Recently, some fluid-structure interaction (FSI) problems involving the fluid impact loads interacting with structures, such as sloshing, slamming, green-water, etc., have been considered, especially in the ocean engineering field. The governing equations for both an elastic solid model and flow model were originally derived from similar continuum mechanics principles. In this study, an elastic model based on a particle method, the MPS method, was developed for simulating the FSI problems. The developed model was first applied to a simple cantilever deflection problem for verification. Then, the model was coupled with the fluid flow model, the PNU (Pusan National University modified)-MPS method, and applied to the numerical investigation of the coupling effects between a cantilever and a mass of water, which has variable density, free-falling to the end of the cantilever.

다상유동형 입자법을 이용한 Rayleigh-Taylor 불안정성의 수치해석 (Numerical Study on Rayleigh-Taylor Instability Using a Multiphase Moving Particle Simulation Method)

  • 김경성;구본국;김무현;박종천;최한석;조용진
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제20권1호
    • /
    • pp.37-44
    • /
    • 2017
  • 하나의 시스템 내에 2개 이상의 상이 다른 유체가 존재할 시에는 다상유동에 의한 복장성이 존재하며, 이는 해석의 어려움이 따른다. 두 개 이상의 상이 다른 다상유동은 유동 및 경계면에 영향을 끼치지 때문에, 불안정성과 같은 비선형 유동이 나타나게 된다. 여러 종류의 불안정성 중 레일리히-테일러 불안정성은 대표적인 예로 알려져 있다. 본 연구에서는 밀도차가 레일리히-테일러 불안정성에 미치는 영향을 조사하기 위해 다양한 Atwood 수를 선정하였으며, 초기 경계면 형상 역시 다양한 형태를 설정하고 시뮬레이션 하였다. 본 연구에서 사용된 입자법인 MPS(Moving particle simulation)은 이러한 다상유동에서 널리 쓰이지는 않았으나, 다상유동을 위한 입자간 상호 연성 모델인 자가-부력 항, 표면 장력 항과 경계면 경계 조건 항을 추가로 사용하여 수치해석이 가능하게 하였다. 본 연구에서 새로이 개발된 다상유동형 입자법을 이용하여 고려된 경우들에 대해 수치해석을 수행하였으며, 각각의 결과들을 비교 분석하였다. 또한 레일리히-테일러 불안정성에 기인한 유동의 속도를 측정하여 포텐셜 기반의 이론값과의 비교를 통해 경향성이 일치함을 알 수 있었다. 이론값과의 크기의 차는 포텐셜 기반의 이론값에서는 고려가 힘든 비선형성에 기인한다고 사료된다.

입자법을 이용한 비선형성 자유표면 유동의 수치 시뮬레이션 (Numerical Simulation of Non-linear Free-surface Motions Using Moving Particle Semi-implicit(MPS) Method)

  • 이병혁;정성준;류민철;김용수;김영훈;박종천
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.53-58
    • /
    • 2007
  • A particle method, recognized as one of gridless methods, has been developed to investigate non-linear free-surface motions interacting with structures. This method is more feasible and effective than conventional grid methods for solving flow fieldswith complicated boundary shapes. The method consists of particle interaction models representing pressure gradient, diffusion, incompressibility, and the free-surface boundary conditions without grids. In the present study, broken dam problems with various viscosity values are simulated to validate the developed method.

입자법에 의한 파랑중 2차원 부유체 운동 시뮬레이션 (Numerical Simulation of Two-dimensional Floating Body Motion in Waves Using Particle Method)

  • 정성준;박종천;이병혁;류민철;김용수
    • 한국해양공학회지
    • /
    • 제22권2호
    • /
    • pp.20-27
    • /
    • 2008
  • A moon-pool is a vertical well in a floating barge, drilling ship, or offshore support vessel. In this study, numerical simulation of two-dimensional moon-pool flaw coupled with a ship's motion in waves is carried out using a particle method, the so-called MPS method. The particle method, which is recognized as one of the gridless methods, was developed to investigate nonlinear free-surface motions interacting with structures. The method is more feasible and effective than convectional grid methods in order to solve a flaw field with complicated boundary shapes.

Simulation on mass transfer at immiscible liquid interface entrained by single bubble using particle method

  • Dong, Chunhui;Guo, Kailun;Cai, Qinghang;Chen, Ronghua;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • 제52권6호
    • /
    • pp.1172-1179
    • /
    • 2020
  • As a Lagrangian particle method, Moving Particle Semi-implicit (MPS) method has great capability to capture interface/surface. In recent years, the multiphase flow simulation using MPS method has become one of the important directions of its developments. In this study, some key methods for multiphase flow have been introduced. The interface tension model in multiphase flow is modified to maintain the smooth of the interface and suitable for the three-phase flow. The mass transfer at immiscible liquid interface entrained by single bubble which could occur in Molten Core-Concrete Interaction (MCCI) has been investigated using this particle method. With the increase of bubble size, the height of entrainment column also increases, but the time of film rupture is slightly different. With the increase of density ratio between the two liquids, the height of entrained column decreases significantly due to the decreasing buoyancy of the denser liquid in the lighter liquid. In addition, the larger the interface tension coefficient is, the more rapidly the entrained denser liquid falls. This study validates that the MPS method has shown great performance for multiphase flow simulation. Besides, the influence of physical parameters on the mass transfer at immiscible interface has also been investigated in this study.

받음각을 갖는 평판의 유체 충격 시뮬레이션 (Numerical Simulation for Fluid Impact Loads by Flat Plate with Incident Angles)

  • 이병혁;정성준;류민철;김용수;박종천
    • 대한조선학회논문집
    • /
    • 제45권1호
    • /
    • pp.1-9
    • /
    • 2008
  • The free-surface motions interacting with structures are investigated numerically using the Moving Particle Semi-implicit (MPS) method proposed by Koshizuka et al. (1996) for solving incompressible flow. In the method, Lagrangian moving particles are used instead of Eulerian approach using grid system. Therefore the terms of time derivatives in Navier-Stokes equation can be directly calculated without any numerical diffusion or instabilities due to the fully Lagrangian treatment of fluid particles and topological failure never occur. The MPS method is applied to the numerical study on the fluid impact loads for wet-drop tests in a LNG tank, and the results are compared with experimental ones.

입자법을 이용한 댐 붕괴의 수치 시뮬레이션 (NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD)

  • 이병혁;정성준;김영훈;박종천
    • 한국전산유체공학회지
    • /
    • 제13권1호
    • /
    • pp.28-34
    • /
    • 2008
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

입자법을 이용한 댐 붕괴의 수치 시뮬레이션 (NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD)

  • 박종천;이병혁;정성준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2007년도 추계 학술대회논문집
    • /
    • pp.258-263
    • /
    • 2007
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

  • PDF