• Title/Summary/Keyword: Moving objects

Search Result 1,169, Processing Time 0.028 seconds

Measurements of the Trajectories of Moving Objects with Video System and Image Matching (비디오 시스템과 영상매칭에 의한 운동물체의 거동측정)

  • 이창경;조우석
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.20 no.3
    • /
    • pp.331-341
    • /
    • 2002
  • In order to extract 3-dimensional information from 2-D image, stereo images are prerequisite. Moreover, for the measurement of moving objects, the synchronized sequential stereo images have to be captured and image matching should be implemented for determining the location of moving objects. In this research, a simple method computing 3-dimensional coordinates from sequential images of moving objects was implemented. The sequential stereo images were captured by a video camera with a beam splitter. Once video images were digitalized by frame grabber, the interest points were extracted and matched in each stereo image, and the coordinates of center of them are calculated using weighted average method. Then, 3-dimensional coordinates of moving objects were computed by DLT algorithms.

Query Processing of Spatio-temporal Trajectory for Moving Objects (이동 객체를 위한 시공간 궤적의 질의 처리)

  • Byoungwoo Oh
    • Journal of Platform Technology
    • /
    • v.11 no.1
    • /
    • pp.52-59
    • /
    • 2023
  • The importance of spatio-temporal trajectories for contact tracing has increased due to the recent COVID-19 pandemic. Spatio-temporal trajectories store time and spatial data of moving objects. In this paper, I propose query processing for spatio-temporal trajectories of moving objects. The spatio-temporal trajectory model of moving objects has point type spatial data for storing locations and timestamp type temporal data for time. A trajectory query is a query to search for pairs of users who have been in close contact by boarding the same bus. To process the trajectory query, I use the Geolife dataset provided by Microsoft. The proposed trajectory query processing method divides trajectory data by date and checks whether users' trajectories were nearby for each date to generate information about contacts as the result.

  • PDF

Continuous Location Tracking Algorithm for Moving Position Data

  • Ahn, Yoon-Ae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.19 no.3
    • /
    • pp.979-994
    • /
    • 2008
  • Moving objects are spatio-temporal data that change their location or shape continuously over time. Generally, if continuously moving objects are managed by a conventional database management system, the system cannot properly process the past and future location which is not stored in the database. Up to now, for the purpose of location tracking which is not stored, the linear interpolation to estimate the past location has been usually used. It is suitable for the moving objects on linear route, not curved route. In this paper, we propose a past location tracking algorithm for a moving object on curved routes, and also suggest a future location tracking algorithm using some past location information. We found that the proposed location tracking algorithm has higher accuracy than the linear interpolation function.

  • PDF

Detection using Optical Flow and EMD Algorithm and Tracking using Kalman Filter of Moving Objects (이동물체들의 Optical flow와 EMD 알고리즘을 이용한 식별과 Kalman 필터를 이용한 추적)

  • Lee, Jung Sik;Joo, Yung Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.7
    • /
    • pp.1047-1055
    • /
    • 2015
  • We proposes a method for improving the identification and tracking of the moving objects in intelligent video surveillance system. The proposed method consists of 3 parts: object detection, object recognition, and object tracking. First of all, we use a GMM(Gaussian Mixture Model) to eliminate the background, and extract the moving object. Next, we propose a labeling technique forrecognition of the moving object. and the method for identifying the recognized object by using the optical flow and EMD algorithm. Lastly, we proposes method to track the location of the identified moving object regions by using location information of moving objects and Kalman filter. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

Algorithm for Moving Object Tracking from Moving Camera Using Histogram Projection (히스토그램 프로젝션을 이용한 움직이는 카메라로 부터의 이동물체 추적 알고리즘)

  • 설성욱;이희봉;김효성;남기곤;이철헌
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.2 no.4
    • /
    • pp.38-45
    • /
    • 2001
  • In this paper, we propose an algorithm for moving object tracking from moving camera using histogram back program intersection(HI) and XY-projection The proposed method segments objects using histogram back projection, matches tracing objects using histogram intersection and extracts them using XY- projection. Through the simulation this paper shows that the proposed method segments. matches and tracks objects without significant error image sequences obtained by moving camera.

  • PDF

Design of User Interface for Query and Visualization about Moving Objects in Mobile Device

  • Lee, Jai-Ho;Nam, Kwang-Woo;Kim, Min-Soo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.832-837
    • /
    • 2002
  • As diverse researches are working about location acquisition, storing method, data modeling and query processing of moving objects, the moving object database systems, which can gain, store and manage location information and query processing, are tuning up. As the mobile device is moving but have constraints, the convenience user interface for spatio-temporal query and viewing query result needs. In this paper, we designed user Interface for spatio-temporal query related moving objects, viewing query result, tracing current and past location of those and monitoring. And we designed system for implementation of these interfaces.

  • PDF

A Study on the recognition of moving objects by segmenting 2D Laser Scanner points (2D Laser Scanner 포인트의 자동 분리를 통한 이동체의 구분에 관한 연구)

  • Lee Sang-Yeop;Han Soo-Hee;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.177-180
    • /
    • 2006
  • In this paper we proposed a method of automatic point segmentation acquired by 2D laser scanner to recognize moving objects. Recently, Laser scanner is noticed as a new method in the field of close range 3D modeling. But the majority of the researches are pointed on precise 3D modeling of static objects using expensive 3D laser scanner. 2D laser scanner is relatively cheap and can obtain 2D coordinate information of moving object's surface or can be utilized as 3D laser scanner by rotating the system body. In these reasons, some researches are in progress, which are adopting 2D laser scanner to robot control systems or detection of objects moving along linear trajectory. In our study, we automatically segmented point data of 2D laser scanner thus we could recognize each of the object passing through a section.

  • PDF

REAL-TIME DETECTION OF MOVING OBJECTS IN A ROTATING AND ZOOMING CAMERA

  • Li, Ying-Bo;Cho, Won-Ho;Hong, Ki-Sang
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.71-75
    • /
    • 2009
  • In this paper, we present a real-time method to detect moving objects in a rotating and zooming camera. It is useful for camera surveillance of fixed but rotating camera, camera on moving car, and so on. We first compensate the global motion, and then exploit the displaced frame difference (DFD) to find the block-wise boundary. For robust detection, we propose a kind of image to combine the detections from consecutive frames. We use the block-wise detection to achieve the real-time speed, except the pixel-wise DFD. In addition, a fast block-matching algorithm is proposed to obtain local motions and then global affine motion. In the experimental results, we demonstrate that our proposed algorithm can handle the real-time detection of common object, small object, multiple objects, the objects in low-contrast environment, and the object in zooming camera.

  • PDF

Tracing of Moving Objects by Stereo Video Cameras (스테레오 비디오 카메라에 의한 운동물체의 위치추적)

  • Lee, Chang-Kyung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.15 no.2
    • /
    • pp.185-193
    • /
    • 1997
  • While close range photogrammetry has been widely applied for static deformation analysis, video cameras have many characteristics that make them the sensors of choice for dynamic analysis of rapidly changing situations. They also have limitations. The aim of this research is to explore the potential of a video system for monitoring dynamic objects. A pilot system consists of two camcorders, VCR, and PC with frame grabber. To estimte the performance of this system for moving objects, a car was imaged covering several phases when starting to drive. The sequential images of a moving car were recorded on VCR. 15 images per second were digitized in an off-line mode by frame grabber. The image coordinates of targets attached to the rear bumper of a car were acquired by IDRISI, and the object coordinates were derived based on DLT. This research suggests that home video cameras, PC, and photogrammetric principles are promising tools for monitoring of the moving objects and vibrations as well as other time dependent situations.

  • PDF

Moving target detection by using the hierarchical spatiotemporal filters with orientation selectivity (방향성 계층적 시공간 필터에 의한 움직이는 물체의 검출)

  • 최태완;김재창;윤태훈;남기곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.9
    • /
    • pp.135-143
    • /
    • 1996
  • In this paper, we popose a neural network that detects edges of moving objects in an image using a neural network of hierarchical spatial filter with orientation selectivity. We modify the temporal difference network by adding a self loop to each neuraon cell to reduce the problems of phantom edge detected by the neural network proposed by kwon yool et al.. The modified neural network alleviates the phantom edges of moving objects, and also can detect edges of miving objects even for the noisy input. By computer simulation with real images, the proposed neural netowrk can extract edges of different orientation efficiently and also can reduce the phantom edges of moving objects.

  • PDF