• Title/Summary/Keyword: Moving object edge

Search Result 87, Processing Time 0.029 seconds

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

A Study of Background Edge Generation for Moving Object Detection under Moving Camera (이동카메라에서 이동물체 감지를 위한 배경에지 생성에 관한 연구)

  • Lee, June-Hyung;Chae, Ok-Sam
    • Journal of the Korea Society of Computer and Information
    • /
    • v.11 no.6 s.44
    • /
    • pp.151-156
    • /
    • 2006
  • This paper presents an background edge generation based automatic algorithm for detection of moving objects under moving camera. Background image is generated by rotating the fixed the camera on the tripod horizontally, aligning and reorganizing this images. We develop an efficient approach for robust panoramic background edge generation as well as method of edge matching between input image and background image. We applied the proposed algorithm to real image sequences. The proposed method can be successfully realized in various monitoring systems like intrusion detection as well as video surveillance.

  • PDF

A Single Moving Object Tracking Algorithm for an Implementation of Unmanned Surveillance System (무인감시장치 구현을 위한 단일 이동물체 추적 알고리즘)

  • 이규원;김영호;이재구;박규태
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.11
    • /
    • pp.1405-1416
    • /
    • 1995
  • An effective algorithm for implementation of unmanned surveillance system which detects moving object from image sequences, predicts the direction of it, and drives the camera in real time is proposed. Outputs of proposed algorithm are coordinates of location of moving object, and they are converted to the values according to camera model. As a pre- processing, extraction of moving object and shape discrimination are performed. Existence of the moving object or scene change is detected by computing the temporal derivatives of consecutive two or more images in a sequence, and this result of derivatives is combined with the edge map from one original gray level image to obtain the position of moving object. Shape discri-mination(Target identification) is performed by analysis of distribution of projection profiles in x and y directions. To reduce the prediction error due to the fact that the motion cha- racteristic of walking man may have an abrupt change of moving direction, an order adaptive lattice structured linear predictor is proposed.

  • PDF

Video object segmentation using a novel object boundary linking (새로운 객체 외곽선 연결 방법을 사용한 비디오 객체 분할)

  • Lee Ho-Suk
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.255-274
    • /
    • 2006
  • Moving object boundary is very important for the accurate segmentation of moving object. We extract the moving object boundary from the moving object edge. But the object boundary shows broken boundaries so we develop a novel boundary linking algorithm to link the broken boundaries. The boundary linking algorithm forms a quadrant around the terminating pixel in the broken boundaries and searches for other terminating pixels to link in concentric circles clockwise within a search radius in the forward direction. The boundary linking algorithm guarantees the shortest distance linking. We register the background from the image sequence using the stationary background filtering. We construct two object masks, one object mask from the boundary linking and the other object mask from the initial moving object, and use these two complementary object masks to segment the moving objects. The main contribution of the proposed algorithms is the development of the novel object boundary linking algorithm for the accurate segmentation. We achieve the accurate segmentation of moving object, the segmentation of multiple moving objects, the segmentation of the object which has a hole within the object, the segmentation of thin objects, and the segmentation of moving objects in the complex background using the novel object boundary linking and the background automatically. We experiment the algorithms using standard MPEG-4 test video sequences and real video sequences of indoor and outdoor environments. The proposed algorithms are efficient and can process 70.20 QCIF frames per second and 19.7 CIF frames per second on the average on a Pentium-IV 3.4GHz personal computer for real-time object-based processing.

Reliable extraction of moving edge segments in the dynamic environment (동적인 입력환경에서 신뢰성이 있는 이동 에지세그먼트 검출)

  • Ahn Ki-Ok;Lee June-Hyung;Chae Ok-Sam
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.5 s.311
    • /
    • pp.45-51
    • /
    • 2006
  • Recently, the IDS(Intrusion Detection System) using a video camera is an important part of the home security systems which start gaining popularity. However, the video intruder detection has not been widely used in the home surveillance systems due to its unreliable performance in the environment with abrupt illumination change. In this paper, we propose an effective moving edge extraction algerian from a sequence image. The proposed algorithm extracts edge segments from current image and eliminates the background edge segments by matching them with reference edge list, which is updated at every frame, to find the moving edge segments. The test results show that it can detect the contour of moving object in the noisy environment with abrupt illumination change.

Efficient Tracking of a Moving Object Using Representative Blocks Algorithm

  • Choi, Sung-Yug;Hur, Hwa-Ra;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.678-681
    • /
    • 2004
  • In this paper, efficient tracking of a moving object using optimal representative blocks is implemented by a mobile robot with a pan-tilt camera. The key idea comes from the fact that when the image size of moving object is shrunk in an image frame according to the distance between the camera of mobile robot and the moving object, the tracking performance of a moving object can be improved by changing the size of representative blocks according to the object image size. Motion estimation using Edge Detection(ED) and Block-Matching Algorithm(BMA) is often used in the case of moving object tracking by vision sensors. However these methods often miss the real-time vision data since these schemes suffer from the heavy computational load. In this paper, the optimal representative block that can reduce a lot of data to be computed, is defined and optimized by changing the size of representative block according to the size of object in the image frame to improve the tracking performance. The proposed algorithm is verified experimentally by using a two degree-of-freedom active camera mounted on a mobile robot.

  • PDF

The Moving Object Detecting and Tracking System Using the Difference Images (차영상을 이용한 이동 방향 검출 및 추적 시스템)

  • Moon, Cheol-Hong;Kim, Sung-Oh;Kim, Kap-Sung;Jang, Dong-Young;Roo, Young-Soo
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.421-422
    • /
    • 2006
  • Using the still image through the camera reports which the moving object tracking system. Moving object direction detected to compare the two difference images. And base block set at moving object. Matching area set current difference image. The edge image of prior frame and current frame implement the moving object tracking system to block matching.

  • PDF

Moving Object Tracking by Real Time Image Analysis (실시간 영상 분석에 의한 이동 물체 추적)

  • 구상훈;이은주
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2003.11a
    • /
    • pp.145-156
    • /
    • 2003
  • This paper for real time object tracking in this treatise detect histogram analysis that is accumulation value of binary conversion density and edge information and body that move by real time use of difference Image techniques and proposed method to object tracking. Firstly, we extract edge that can reduce quantity of data keeping information about form of input image in object detection. Object is extracted by performing difference image and binarization in edge image. Area of detected object is determined by threshold value that divide sum of horizontal accumulation value about binary conversion density by value that add horizontalityㆍverticality maximum accumulation value. Object is tracked by comparing similarity with object that is detected in previous frame and present frame. As experiment result, proposed algorithm could improve the object detection speed, and could track object by real time and could track local movement.

  • PDF

An Moving Object Segmentation for Moving Camera (이동카메라 환경에서 이동물체분할에 관한 연구)

  • Cho, Youngseok;Kang, Jingu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2013.07a
    • /
    • pp.47-48
    • /
    • 2013
  • 본 논문에서는 이동 카메라 환경에서 이동물체 추적을 위한 영상 분할에 대하여 연구하였다. 입력영상으로 부터 이동물체영역을 분할하기위하여 입력영상에 대하여 윤곽선을 구한 다음 윤곽선 영역에 대하여 BMA을 이용하여 이동벡터를 구한다. 구해진 이동벡터를 같은 특성의 벡터들을 분류하여 이동물체를 분할한다. 제안된 알고리즘이 다중 이동물체의 분할이 가능하였다.

  • PDF

The Role of the Pattern Edge in Goldfish Visual Motion Detection

  • Kim, Sun-Hee;Jung, Chang-Sub
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.6
    • /
    • pp.413-417
    • /
    • 2010
  • To understand the function of edges in perception of moving objects, we defined four questions to answer. Is the focus point in visual motion detection of a moving object: (1) the body or the edge of the object, (2) the leading edge or trailing edge of the object, (3) different in scotopic, mesopic and photopic luminance levels, or (4) different for colored objects? We measured the Optomotor Response (OMR) and Edge Triggering Response (ETR) of goldfish. We used a square and sine wave patterns with black and red stripes and a square wave pattern with black and grey stripes to generate OMR's and ETR's in the goldfish. When we used black and red stripes, the black leading edges stimulated an ETR under scotopic conditions, red leading edges stimulated an ETR under photopic conditions, and both black and red leading edges stimulated an ETR under mesopic luminance levels. For black and gray stripes, only black leading edges stimulated an ETR in all three light illumination levels. We observed less OMR and ETR results using the sine wave pattern compared to using the square wave pattern. From these results, we deduced that the goldfish tend to prefer tracking the leading edge of the pattern. The goldfish can also detect the color of the moving pattern under photopic luminance conditions. We decided that ETR is an intriguing factor in OMR, and is suitable as a method of behavioral measurement in visual system research.