• 제목/요약/키워드: Moving object classification

검색결과 46건 처리시간 0.028초

유사한 색상을 지닌 다수의 이동 물체 영역 분류 및 식별과 추적 (Area Classification, Identification and Tracking for Multiple Moving Objects with the Similar Colors)

  • 이정식;주영훈
    • 전기학회논문지
    • /
    • 제65권3호
    • /
    • pp.477-486
    • /
    • 2016
  • This paper presents the area classification, identification, and tracking for multiple moving objects with the similar colors. To do this, first, we use the GMM(Gaussian Mixture Model)-based background modeling method to detect the moving objects. Second, we propose the use of the binary and morphology of image in order to eliminate the shadow and noise in case of detection of the moving object. Third, we recognize ROI(region of interest) of the moving object through labeling method. And, we propose the area classification method to remove the background from the detected moving objects and the novel method for identifying the classified moving area. Also, we propose the method for tracking the identified moving object using Kalman filter. To the end, we propose the effective tracking method when detecting the multiple objects with the similar colors. Finally, we demonstrate the feasibility and applicability of the proposed algorithms through some experiments.

형태학적 특징 기반 모델을 이용한 가축 도난 판단 시스템 (Livestock Anti-theft System Using Morphological Feature-based Model)

  • 김준형;주영훈
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.578-585
    • /
    • 2018
  • In this paper, we propose a classification and theft detection system for human and livestock for various moving objects in a barn. To do this, first, we extract the moving objects using the GMM method. Second, the noise generated when extracting the moving object is removed, and the moving object is recognized through the labeling method. And we propose a method to classify human and livestock using model formation and color for the unique form of the detected moving object. In addition, we propose a method of tracking and overlapping the classified moving objects using Kalman filter. Through this overlap determination method, an event notifying a dangerous situation is generated and a theft determination system is constructed. Finally, we demonstrate the feasibility and applicability of the proposed system through several experiments.

골격 특징 및 색상 유사도를 이용한 가축 도난 감지 시스템 (Livestock Theft Detection System Using Skeleton Feature and Color Similarity)

  • 김준형;주영훈
    • 전기학회논문지
    • /
    • 제67권4호
    • /
    • pp.586-594
    • /
    • 2018
  • In this paper, we propose a livestock theft detection system through moving object classification and tracking method. To do this, first, we extract moving objects using GMM(Gaussian Mixture Model) and RGB background modeling method. Second, it utilizes a morphology technique to remove shadows and noise, and recognizes moving objects through labeling. Third, the recognized moving objects are classified into human and livestock using skeletal features and color similarity judgment. Fourth, for the classified moving objects, CAM (Continuously Adaptive Meanshift) Shift and Kalman Filter are used to perform tracking and overlapping judgment, and risk is judged to generate a notification. Finally, several experiments demonstrate the feasibility and applicability of the proposed method.

Realization for Image Searching Engine with Moving Object Identification and Classification

  • Jung, Eun-Suk;Ryu, Kwang-Ryol;Sclabassi, Robert J.
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2007년도 추계종합학술대회
    • /
    • pp.301-304
    • /
    • 2007
  • A realization for image searching engine with moving objects identification and classification is presented in this paper. The identification algorithm is applied to extract difference image between input image and the reference image, and the classification is used the region segmentation. That is made the database for the searching engine. The experimental result of the realized system enables to search for human and animal at time intervals to use a surveillant system at inside environment.

  • PDF

차량 감시영상에서 그림자 제거를 통한 효율적인 차종의 학습 및 분류 (Efficient Learning and Classification for Vehicle Type using Moving Cast Shadow Elimination in Vehicle Surveillance Video)

  • 신욱선;이창훈
    • 정보처리학회논문지B
    • /
    • 제15B권1호
    • /
    • pp.1-8
    • /
    • 2008
  • 일반적으로 감시영상에서 움직이는 물체들은 배경빼기 혹은 프레임 차를 이용하여 추출된다. 하지만 객체에 의해서 만들어지는 그림자는 심각한 탐지의 오류를 야기시킬 수 있다. 특히, 도로 상에 설치된 감시카메라로부터 획득된 영상으로부터 차량 정보를 분석할 때, 차량에 의해서 생성되는 그림자로 인하여 차량의 모양을 왜곡시켜 부정확한 결과를 만든다. 때문에 그림자의 제거는 감시 영상 내에서의 정확한 객체 추출을 위해서 반드시 필요하다. 본 논문은 도로감시영상 내에서 움직이는 차량의 차종판별 성능을 향상시키기 위한 움직이는 객체 내에 만들어지는 그림자를 제거한다. 제거된 객체의 영역은 소실점을 이용하여 3차원 객체로 피팅(Fitting)한 후 측정된 데이터를 감독 학습하여 원하는 차종 판별결과를 얻는데 사용한다. 실험은 3가지 기계학습 방법{IBL, C4.5, NN(Neural Network)}을 이용하여 그림자의 제거가 차종의 판별성능에 미치는 결과의 평가한다.

EMOS: Enhanced moving object detection and classification via sensor fusion and noise filtering

  • Dongjin Lee;Seung-Jun Han;Kyoung-Wook Min;Jungdan Choi;Cheong Hee Park
    • ETRI Journal
    • /
    • 제45권5호
    • /
    • pp.847-861
    • /
    • 2023
  • Dynamic object detection is essential for ensuring safe and reliable autonomous driving. Recently, light detection and ranging (LiDAR)-based object detection has been introduced and shown excellent performance on various benchmarks. Although LiDAR sensors have excellent accuracy in estimating distance, they lack texture or color information and have a lower resolution than conventional cameras. In addition, performance degradation occurs when a LiDAR-based object detection model is applied to different driving environments or when sensors from different LiDAR manufacturers are utilized owing to the domain gap phenomenon. To address these issues, a sensor-fusion-based object detection and classification method is proposed. The proposed method operates in real time, making it suitable for integration into autonomous vehicles. It performs well on our custom dataset and on publicly available datasets, demonstrating its effectiveness in real-world road environments. In addition, we will make available a novel three-dimensional moving object detection dataset called ETRI 3D MOD.

지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거 (An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance)

  • 응웬탄빈;정선태;조성원
    • 한국멀티미디어학회논문지
    • /
    • 제17권4호
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

검출과 분류기능이 탑재된 실시간 지능형 PTZ카메라 (Real-Time PTZ Camera with Detection and Classification Functionalities)

  • 박종화;안태기;전지혜;조병목;박구만
    • 한국통신학회논문지
    • /
    • 제36권2C호
    • /
    • pp.78-85
    • /
    • 2011
  • 본 논문에서는 카메라 자체에서 움직임을 검출하고 분류된 객체를 추척할 수 있는 지능형 PTZ 카메라 시스템을 제안하였다. 추적하고자 하는 객체가 검출되면 분류하고, 객체의 움직임에 따라 PTZ 카메라가 실시간으로 추적한다. 검출을 위해 GMM을 사용하였고 검출성능을 높이기 위해 그림자 제거 기법을 적용하였다. 검출된 객체의 분류를 위해 Legendre 모멘트를 적용하였다. 본 논문에서는 카메라의 초점 조절을 사용하지않고 영상의 중심과 객체와의 방향, 거리, 속도 정보만을 이용하여 PTZ 카메라의 움직임을 제어하는 방법을 제안하였다. TI DM6446 Davinci를 이용하여 실시간으로 객체의 검출, 분류와 추적이 가능한 카메라 시스템을 구성하였다. 실험 결과 사람과 차량을 구분하고, 움직임의 속도가 빠른 차량에 대해서도 본 추적시스템은 안정적으로 동작함을 확인하였다.

MCMC 방법을 이용한 자율주행 차량의 보행자 탐지 및 추적방법 (Pedestrian Detection and Tracking Method for Autonomous Navigation Vehicle using Markov chain Monte Carlo Algorithm)

  • 황중원;김남훈;윤정연;김창환
    • 로봇학회논문지
    • /
    • 제7권2호
    • /
    • pp.113-119
    • /
    • 2012
  • In this paper we propose the method that detects moving objects in autonomous navigation vehicle using LRF sensor data. Object detection and tracking methods are widely used in research area like safe-driving, safe-navigation of the autonomous vehicle. The proposed method consists of three steps: data segmentation, mobility classification and object tracking. In order to make the raw LRF sensor data to be useful, Occupancy grid is generated and the raw data is segmented according to its appearance. For classifying whether the object is moving or static, trajectory patterns are analysed. As the last step, Markov chain Monte Carlo (MCMC) method is used for tracking the object. Experimental results indicate that the proposed method can accurately detect moving objects.

Classification Algorithms for Human and Dog Movement Based on Micro-Doppler Signals

  • Lee, Jeehyun;Kwon, Jihoon;Bae, Jin-Ho;Lee, Chong Hyun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제6권1호
    • /
    • pp.10-17
    • /
    • 2017
  • We propose classification algorithms for human and dog movement. The proposed algorithms use micro-Doppler signals obtained from humans and dogs moving in four different directions. A two-stage classifier based on a support vector machine (SVM) is proposed, which uses a radial-based function (RBF) kernel and $16^{th}$-order linear predictive code (LPC) coefficients as feature vectors. With the proposed algorithms, we obtain the best classification results when a first-level SVM classifies the type of movement, and then, a second-level SVM classifies the moving object. We obtain the correct classification probability 95.54% of the time, on average. Next, to deal with the difficult classification problem of human and dog running, we propose a two-layer convolutional neural network (CNN). The proposed CNN is composed of six ($6{\times}6$) convolution filters at the first and second layers, with ($5{\times}5$) max pooling for the first layer and ($2{\times}2$) max pooling for the second layer. The proposed CNN-based classifier adopts an auto regressive spectrogram as the feature image obtained from the $16^{th}$-order LPC vectors for a specific time duration. The proposed CNN exhibits 100% classification accuracy and outperforms the SVM-based classifier. These results show that the proposed classifiers can be used for human and dog classification systems and also for classification problems using data obtained from an ultra-wideband (UWB) sensor.