Journal of Korea Spatial Information System Society
/
v.6
no.1
s.11
/
pp.59-71
/
2004
Nearest neighbor query retrieves nearest located target objects, and is very frequently used in mobile environment. In this paper we propose a novel neatest neighbor query processing technique that is able to retrieve nearest located target object from the user who is continuously moving with a direction. The proposed method retrieves objects using the direction property of moving object as well as euclidean distance to target object. The proposed method is applicable to traffic information system, travel information system, and location-based recommendation system which require retrieving nearest located object.
Choi Hyun Mi;Jung Young Jin;Lee Eung Jae;Ryu Keun Ho
Proceedings of the KSRS Conference
/
2004.10a
/
pp.677-680
/
2004
In the mobile environment, according to the movement of the object, the query finds the nearest special object or place from object position. However, because query object moves continuously in the mobile environment, query demand changes according to the direction attribute of query object. Also, in the case of moving of query object and simply the minimum distance value of query result, sometimes we find the result against the query object direction. Especially, in most road condition, as user has to return after reaching U-turn area, user rather spends time and cost. Therefore, in order to solve those problems, in this paper we propose the nearest neighbor method considering moving object position and direction for mobile recommendation system.
Proceedings of the Korea Information Processing Society Conference
/
2003.11c
/
pp.1429-1432
/
2003
This paper addresses the problem of finding a constrained nearest neighbor for moving query point(we call it CNNMP) The Nearest neighbor problem is classified by existence of a constrained region, the number of query result and movement of query point and target. The problem assumes that the query point is not static, as 1-nearest neighbor problem, but varies its position over time to the constrained region. The parameters as NC, NCMBR, CQR and QL for the algorithm are also presented. We suggest the query optimization algorithm in consideration of topological relationship among them
Kim, Sang-Ho;Choi, Bo-Yoon;Ryu, Keun-Ho;Nam, Kwang-Woo;Park, Jong-Hyun
Proceedings of the KSRS Conference
/
2003.11a
/
pp.715-717
/
2003
Some previous works for nearest neighbor (NN) query processing technique can treat a case that query/data are both moving objects. However, they cannot find exact result owing to vagueness of criterion. In order to escape their limitations and get exact result, we propose new NN query techniques, exact CTNN (continuous trajectory NN) query, approximate CTNN query, and dynamic CTNN query. These are all superior to pervious works, by reducing of number of calculation, considering of trajectory information, and using of continuous query concept. Using these techniques, we can solve any situations and types of NN query in location-aware environment.
Park, Bo-Yoon;Kim, Sang-Ho;Nam, Kwang-Woo;Ryo, Keun-Ho
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2003.09a
/
pp.467-470
/
2003
When user wants to find objects which have the nearest position from him, we use the nearest neighbor (NN) query. The GIS applications, such as navigation system and traffic control system, require processing of NN query for moving objects (MOs). MOs have trajectory with changing their position over time. Therefore, we should be able to find NN object continuously changing over the whole query time when process NN query for MOs, as well as moving nearby on trajectory of query. However, none of previous works consider trajectory information between objects. Therefore, we propose a method of continuous NN query for trajectory of MOs. We call this CTNN (continuous trajectory NN) technique. It ran find constantly valid NN object on the whole query time by considering of trajectory information.
Proceedings of the Korean Society of Computer Information Conference
/
2021.07a
/
pp.223-224
/
2021
Recently, k-farthest neighbor (kFN) queries have not as much attention as k-nearest neighbor (kNN) queries. Therefore, this study considers moving k-farthest neighbor (MkFN) queries for spatial network databases. Given a positive integer k, a moving query point q, and a set of data points P, MkFN queries can constantly retrieve k data points that are farthest from the query point q. The challenge with processing MkFN queries in spatial networks is to avoid unnecessary or superfluous distance calculations between the query and associated data points. This study proposes a batch processing algorithm, called MOFA, to enable efficient processing of MkFN queries in spatial networks. MOFA aims to avoid dispensable distance computations based on the clustering of both query and data points. Moreover, a time complexity analysis is presented to clarify the effect of the clustering method on the query processing time. Extensive experiments using real-world roadmaps demonstrated the efficiency and scalability of the MOFA when compared with a conventional solution.
In this paper, we address an efficient processing scheme for k-nearest neighbor queries to retrieve k static objects in road network databases. Existing methods cannot expect a query processing speed-up by index structures in road network databases, since it is impossible to build an index by the network distance, which cannot meet the triangular inequality requirement, essential for index creation, but only possible in a totally ordered set. Thus, these previous methods suffer from a serious performance degradation in query processing. Another method using pre-computed network distances also suffers from a serious storage overhead to maintain a huge amount of pre-computed network distances. To solve these performance and storage problems at the same time, this paper proposes a novel approach that creates an index for moving objects by approximating their network distances and efficiently processes k-nearest neighbor queries by means of the approximate index. For this approach, we proposed a systematic way of mapping each moving object on a road network into the corresponding absolute position in the m-dimensional space. To meet the triangular inequality this paper proposes a new notion of average network distance, and uses FastMap to map moving objects to their corresponding points in the m-dimensional space. After then, we present an approximate indexing algorithm to build an R*-tree, a multidimensional index, on the m-dimensional points of moving objects. The proposed scheme presents a query processing algorithm capable of efficiently evaluating k-nearest neighbor queries by finding k-nearest points (i.e., k-nearest moving objects) from the m-dimensional index. Finally, a variety of extensive experiments verifies the performance enhancement of the proposed approach by performing especially for the real-life road network databases.
이동 객체에 대한 기존 최근접(nearest neighbor, NN) 질의 처리 기법들은 질의 궤적에 대해 연속적으로 정확하게, 질의와 가장 가까운 위치를 유지하면서 움직이는 최근접 객체를 선택할 수 있는 충분한 기준을 가지고 있지 못하다. 이 논문은 질의 객체와 데이터 객체가 모두 이동 객체인 경우에 가장 적합하게 사용되는 객체 궤적에 대한 연속적인 질의 처리를 통해 정확한 결과를 얻을 수 있는 새로운 최근접 질의 처리 기법, 연속 궤적 최근접 질의(CTNN, continuous trajectory nearest neighbor query)를 제안한다. 우리는 두 가지 Approximate, Exact CTNN 기법을 제안하며 이들은 모두 항해 시스템, 교통 통제 시스템, 물류정보 시스템 등 각종 위치 기반 서비스(L8S: location based services) 상에서 다양하게 사용될 수 있다. 이들은 이동 객체 궤적이 미리 알려져 있는 경우 그리고 질의와 데이터 객체가 모두 이동 객체인 경우에 가장 적합하다.
Journal of Korea Spatial Information System Society
/
v.11
no.3
/
pp.9-18
/
2009
Recently, due to the advanced technologies of mobile devices and wireless communication, there are many studies on telematics and LBS(location-based service) applications. because moving objects usually move on spatial networks, their locations are updated frequently, leading to the degradation of retrieval performance. To manage the frequent updates of moving objects' locations in an efficient way, a new distributed grid scheme, called DS-GRID (distributed S-GRID), and k-NN(k-nearest neighbor) query processing algorithm was proposed[1]. However, the result of k-NN query processing technique may be invalidated as the location of query and moving objects are changed. Therefore, it is necessary to study on continuous k-NN query processing algorithm. In this paper, we propose both MCE-CKNN and MBP(Monitoring in Border Point)-CKNN algorithmss are S-GRID. The MCE-CKNN algorithm splits a query route into sub-routes based on cell and seproves retrieval performance by processing query in parallel way by. In addition, the MBP-CKNN algorithm stores POIs from the border points of each grid cells and seproves retrieval performance by decreasing the number of accesses to the adjacent cells. Finally, it is shown from the performance analysis that our CKNN algorithms achieves 15-53% better retrieval performance than the Kolahdouzan's algorithm.
Journal of the Korea Society of Computer and Information
/
v.26
no.4
/
pp.63-74
/
2021
Location-based services (LBSs) are expected to process a large number of spatial queries, such as shortest path and k-nearest neighbor queries that arrive simultaneously at peak periods. Deploying more LBS servers to process these simultaneous spatial queries is a potential solution. However, this significantly increases service operating costs. Recently, batch processing solutions have been proposed to process a set of queries using shareable computation. In this study, we investigate the problem of batch processing moving k-nearest neighbor (MkNN) queries in dynamic spatial networks, where the travel time of each road segment changes frequently based on the traffic conditions. LBS servers based on one-query-at-a-time processing often fail to process simultaneous MkNN queries because of the significant number of redundant computations. We aim to improve the efficiency algorithmically by processing MkNN queries in batches and reusing sharable computations. Extensive evaluation using real-world roadmaps shows the superiority of our solution compared with state-of-the-art methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.