
Nearest Neighbor Query Processing Techniques
in Location-Aware Environment

SangHo Kim, BoYoon Choi, Keun Ho Ryu

Database Laboratory, Computer Science of Chungbuk National University
Cheongju, Chungbuk, 361-763, Korea

{shkim, bychoi, khryu}@dblab.cbu.ac.kr

Kwang Woo Nam, Jong Hyun Park
Spatial Information Electronic Center of Electronics and Telecommunications Research Institute (ETRI)

No. 161, Gajeong Dong, Usung Gu, Daejun, Chungnam, Korea
{kwnam, jhp}@etri.re.kr

Abstract: Some previous works for nearest neighbor (NN)
query processing technique can treat a case that query/data are
both moving objects. However, they cannot find exact result
owing to vagueness of criterion. In order to escape their limita-
tions and get exact result, we propose new NN query tech-
niques, exact CTNN (continuous trajectory NN) query, ap-
proximate CTNN query, and dynamic CTNN query. These are
all superior to pervious works, by reducing of number of calcu-
lation, considering of trajectory information, and using of con-
tinuous query concept. Using these techniques, we can solve
any situations and types of NN query in location-aware envi-
ronment.
Keywords: nearest neighbor query, moving, location-aware. 1

1. Introduction

Many GIS applications, such as air/vehicle traffic con-
trol system and meteorological observation system, treat
moving objects and use variable query processing tech-
niques. Among them, NN query is one of popular tech-
niques, which finds object(s) that have nearest position
from query. Many previous works for NN technique are
applied to the case that query/data objects are mov-
ing/static or static/static objects. Some of them can proc-
ess the case that query/data objects are both moving ob-
jects. But, they have still some limitations, for example,
vagueness of criterion to choose NN object when there
are many candidates. To conquer these limitations and
get exact result, we propose new techniques - exact, ap-
proximate, and dynamic CTNN query. Exact CTNN
query is nature foundation approach, and makes it possi-
ble that get the exact result. Although approximate
CTNN query may have less exact result than exact
CTNN, it has less calculation time cost. There are trade-
off between cost and exactness of this approach. Dy-
namic CTNN query get exact result dynamically without
any limitation.

Our techniques use trajectory information of objects to
get exact result, and concept of continuous query [1] to
get the timely response continuously over query. If we
want to find one NN object while there are some candi-
dates that have nearest distance simultaneously at any

This work was supported in part of University IT Research Center
Project , KOSEF RRC Project (Cheongju Univ. ICRC) , and Spatial
Information Electronic Center of ETRI in Korea

position of query trajectory, then previous works return
result with randomly detecting. So, they may yield inac-
curate or immediately changing (sometimes, these are
meaningless in real world) result. If we consider trajec-
tory information of objects, we can avoid this situation
and get the exact result.

The rest of this paper is organized as follows. Related
works are discussed in Section 2. Section 3 shows as-
sumptions and notations. Our proposed techniques are
described in Section 4. We briefly show evaluation of
our techniques in Section 5, and then conclude this paper
and present future works in Section 6.

2. Related Works

The cases of NN query processing that query/data ob-
jects are both moving objects are shown in [2, 3, 4]. Kol-
lios[2] uses duality transform technique, but this is use-
less on more than two dimensions. Benetis[3] calculates
distance between moving objects by using differential
equation at periodical instant time on three dimensions,
but it suffers from usual drawbacks of sampling. Tao[4]
proposes continuous NN query technique. Though it
finds continuously time points that result get changed on
query, only k-NN query processing is possible.

Although [4] can solve NN query almost exactly, still
have problem to get exact result. So we add considering
of trajectory information to concept of continuous query.
Use of continuous concept is little different between ours
and [4], but its basic concept is same. Besides we can
solve limitations of previous works.

3. Assumptions and Notations

We assume that moving objects are point objects and
change only their position continuously over time. In-
formation of moving objects is detected periodically and
is stored in database with triple <id, (xi, yi), t>. This
means that object id is located on (xi, yi) coordinate at
time t. In terms of geography or geometry, the move-
ment path is called trajectory, and this is represented by
polylines, i.e., set of separate and sequential segments.
Each segment connects two consecutive data points.
These points are chosen when update (insertion, deletion,

change of velocity or direction) is occurred. So each ob-
ject has a constant velocity on one segment. In exact
CTNN and approximate CTNN, we assume the whole
trajectory information of data and query is predefined.
So, it can be applied to a case as bus, train, and airplane.
In this case, we can predict their trajectory, and also in
case of query, user can input his/her expected trajectory.
Following table 1 shows some notations.

Table 1. Notations
□ai ith segment of object a (i ≥ 1, integer)
xab (yab) absolute of difference value between a, b on x (y) axis
∆x (∆y) moving distance on x (y) axis per unit time interval
|a-b|t =√(xabt)2+(yabt)2 : distance between □a and □b at time t
/p =∆y ÷ ∆x : slope of segment p
∂p =√∆x2 + ∆y2 : displacement of p
In case of /p and ∂p ,

If both ∆x and ∆y have (+) value, result also have (+) value.
Otherwise, result have (-) value.

4. Continuous Trajectory NN Query

Basically, CTNN query contain three steps of calcula-

tion. First, we detect endpoints time of segments and
store interval that is made of two consecutive detecting
points, in time list TL. For simplicity, we call this
evaluation time. Second, we find intersection points be-
tween all segments and store them in intersection list IL.
In the real world, if objects have same coordinate at
same time, this means collision and these cases hardly
occur. So, if distance between objects is less than 1 me-
ter, we regard these as intersect or meet. In order to get
more exact result, we use symmetrical movement of data
segments over query before calculating intersections. We
show reason of this later. These steps are applied to both
data and query trajectories. And all time points (except
last evaluation time) become expectation points that
changing of NN may be occurred. From these points, we
can maintain concept of continuous query. Third, we
calculate distance between query and data points at
above points, and store object that has nearest distance in
TL. When we want to find 1NN object, if there are many
candidates that have nearest distance simultaneously, we
choose one using calculation of displacement (table 2).
y

q
a

b x

t1 t9
tt2 t3 t4 t5 t6 t7 t8

y

q
a

b x

t1 t9
tt2 t3 t4 t5 t6 t7 t8

q
a

b x

t1 t9
tt2 t3 t4 t5 t6 t7 t8t1 t9
tt2 t3 t4 t5 t6 t7 t8

q
a
b
y

x

t1 t9
tt2 t3 t4 t5 t6 t7 t8

q
a
b
y

x

t1 t9
tt2 t3 t4 t5 t6 t7 t8t1 t9
tt2 t3 t4 t5 t6 t7 t8

(a) Original information (b) After symmetrical movement
Fig. 1. Simple example of CTNN

For example, in fig. 1, assume that there are data ob-

jects <a, (1, 4), (9, 4), [t1, t9]>, <b, (1, 1), (9, 5), [t1, t9]>
and query <q, (1, 3), (9, 3), [t1, t9]>. Evaluation times are
t1 and t9, so initial TL={[t1, t9]}. Gather data segments in
one space over query trajectory (figure 1(b)) and find
intersection points, so IL={t3, t5, t7}. Now, we calculate
distance between query and data points at t1, t3, t5, t7. At

Table 2. Calculation of Displacement
1. When /a = /b and ∂a = ∂b ,

A. If xab = yab = 0 , Then □a and □b coincide.
B. If xab ≠ 0 and yab ≠ 0 , Then □a and □b parallel.

2. When |/a| = 1 / |/b| and ∂a = ∂b ,
A. If xab ≠ yab or xab = 0 (or yab = 0) , Then □a and □b not in-

tersect
B. When |/a| = h ÷ (h+k) and |/b| = (h+k) ÷ h , If xab = yab

= k*f , Then □a and □b intersect after f times
3. When |/a| = |/b| < 1 and /a = -/b and ∂a = -∂b ,

A. If xab ≠ 0 , Then □a and □b not intersect
B. When xab = 0 and |/a , /b| = h ÷ (h+k) , If yab = h*k*2 ,

Then □a and □b intersect after k times.
4. When the rest of all cases, calculate

ba
y

Y
ba

x
X abab

∂−∂
=

∂−∂
= ,

(round off the numbers to two decimal places)
A. If (/a or /b) < 1 or (/a and /b) < 1 , Then intersection

time between □a and □b is X+Y
B. If (/a and /b) > 1 , Then intersection time between □a

and □b is MAX(X, Y)

t1, NN object is a and TL={<a, [t1, t9]>}. At t3, NN ob-
ject is changed to b and TL is updated as {<a, [t1, t3]>,
<b, [t3, t9]>}. At t5, still b is a NN object, so ignore. At t7,
again NN object = a, and TL is updated as {<a, [t1, t3]>,
<b, [t3, t7]>, <a, [t7, t9]>}. Finally, CTNN returns TL.

1) Exact CTNN query

Exact CTNN query follows above basic calculations
with some additional and changing of processing steps.

1 : Detect evaluation times and intersection times.
2 : At first evaluation time e1, separate segments P in two

groups over q → L(below) / H(above).
3 : Assume first intersection time i1 belongs in H.

At e1, calculate |q - P| that belong in H.
Then, find 1NN object as p. Now, TL={<p, [e1, i1]>}

4 : At i1, choose objects which belong in U and have nearer
distance than |i1 - q|. Then move them into H.

5 : At e1, if there are any point which has nearer distance
from q than p of Step3, then change p.

6 : If changed NN object make new intersection i1' in [e1, i1],
TL={<p, [e1, i1']>, <p1, [i1', i1]>}. (p1 meet with p at i1').

7 : If there are another evaluation time points in [e1, i1],
only pass Step5 and Step6.

8 : At i1, start with p, repeat only Step4 ~ Step7,
Until next intersection point of Step1.

2) Approximate CTNN query

We also propose approximate CTNN query technique
to reduce calculation time cost of exact CTNN query,
with submitting of a little error of result. If you allow
more time cost, we may get exact result (of course, this
need less time than exact CTNN query).

Approximate CTNN query use circle to find candi-
dates. We call this hunt circle. This technique does not
need symmetrical movement of segments.

Following is steps of approximate CTNN query.

1 : Detect evaluation times and intersection times.
2 : At first evaluation time e1, calculate |q - P|.

Then find 1NN object as p.
3 : At e1, Draw hunt circle h

(diameter is |q - p| , center point is middle of line qp)
4 : Find segments which intersect with h

4.1 : If there are no segments, TL={<p, [e1, e2]>}.
4.2 : If p1 intersect with h at e1', and p1 have nearer distance

than p, Then TL={<p, [e1, e1']>, <p1, [e1', e2]>}.
4.3 : If i1 is contained in h, and have nearer distance than p,

Choose one of objects (that make i1) as NN.
TL={<p, [e1, i1]>, <NN, [i1, e2]>}.

5 : Extend h into last point of first query segment.
Repeat Step4

6 : On each segment of query trajectory,
Repeat Step3 ~ Step5

3) Dynamic CTNN query

The above techniques have assumption that trajectory
information is known already. But, Dynamic CTNN
query have not this assumption.

Most previous works for NN query processing use in-
dex structure, such as TPR-tree, 3DR-tree, R-tree, and
etc., for efficient and less consumptive finding and cal-
culation. Our approaches also have better performance
when use index. Especially, dynamic CTNN query have
most superior effect by using index, because this have
frequent updates by dynamic characteristics of data in-
sertion or deletion.

Here, we only show basic processing steps of dynamic
CTNN query with assumption that use index structure.

Given query interval (point) from (at) e1,

1 : At e1, Calculate distance between query and objects.
2 : Choose one object that has nearest distance, as p.
3 : If there are many candidates,

Wait until next insertion of their information,
Then choose one by calculation of displacement.
TL={<p, [e1, e2]>}.
(e2 : is created by query (is created by insertion of data))

4 : At second insertion time of data, we can make first seg-
ment of data.
Then, find intersection using calculation of displacement.

5 : If there are any intersection i1 that is made of p and p',
TL={<p, [e1, i1]>, <p', [i1, e2]>}.
Other intersections are ignored.

6 : Before time of i1, if any data point p1 is newly inserted at
e1', and have nearer distance than p,
Then, TL={<p, [e1, e1']>, <p1, [e1', e2]>}.

7 : Before time of i1, if any data point p1 is deleted at e1', and
this is NN object at e1',
Then, calculate new NN object (first candidate is NN of
previous interval).

8 : From i1, with p, Repeat Step3 ~ Step7

In this query, we can return TL when NN object is cho-

sen surely or query is ended, selectively.

5. Analysis of Performance

In fig. 1, assume we calculate NN at evaluation time
and intersection points without step of symmetrical
movement (as fig. 1(a)). To get exact result, we calculate
additionally at t2, t3, and t4, and may have 3 more mean-
inglessness update (Mean that after calculating, there is
no changing of NN) of TL. If we use symmetrical
movement, it is enough that we have 1 meaninglessness
update at t5. In case of exact CTNN query, we separate
all data into ABOVE or BELOW. Then, move the seg-
ments selectively and partially, and calculate distance
between one side's all data and query. In case of previous
works, they calculate distance between all data and query,
so we reduce the number of calculation than previous
one. Also we separate intersection point and evaluation
point in two lists to reduce number of list update. It may
looks like unnecessary division, but we found that it
make better performance than others.

We may have much calculation time to find the first
NN object. But, at all other time points, we don't need
calculation of distance any longer, except occurring of
deletion or newly insertion. We only check what object
is met with p that is NN object until now. If many ob-
jects are met with p, only do calculation of displacement,
and find exact 1NN object. Based on analysis, we can be
convinced that our approaches are far superior to others.

6. Conclusion

We proposed new NN query techniques that are suit-
able when query/data are both moving objects. NN query
in location-aware environment must be able to find ob-
jects which move nearby over query. Our approaches can
satisfy this condition as we find exact and valid NN ob-
jects continuously over the whole query time with con-
sidering of direction, velocity, and slope of objects. Also,
ours are appropriately applied to all cases. That is, these
have no concern with type of data/query (static or mov-
ing) and trajectory (unknown or known in advance).
Moreover, these can be extended to k-NN query easily.

We will show cases that process CTNNs with index
structure in later version. And we are improving our ap-
proaches, so we can soon show better performance. Also,
we will develop extending CTNN versions that can be
applied to the case that moving objects have region.

References

[1] A. P. Sistla, O. Wolfson, S. Chamberlain, S. Dao, 1997.

Modeling and Querying Moving Objects, ICDE,
pp.422~432.

[2] G. Kollios, D. Gunopulos, V. J. Tsotras, 1999. Nearest
Neighbor Queries in a Mobile Environment, Spatio-
Temporal Database Management, pp.119~134.

[3] R. Benetis, C. S. Jensen, G. Karciauskas, S. Salenis, 2002.
Nearest Neighbor and Reverse Nearest Neighbor Queries
for Moving Objects, IDEAS, pp.44~53.

[4] Y. Tao, D. Papadias, 2003. Spatial Queries in Dynamic
Environments, TODS, pp.101~139.

	Return to previous screen
	Nearest Neighbor Query Processing Techniques in Location-Aware Environment

