• Title/Summary/Keyword: Moving Time

Search Result 3,702, Processing Time 0.035 seconds

Visual Tracking of Moving Target Using Mobile Robot with One Camera (하나의 카메라를 이용한 이동로봇의 이동물체 추적기법)

  • 한영준;한헌수
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1033-1041
    • /
    • 2003
  • A new visual tracking scheme is proposed for a mobile robot that tracks a moving object in 3D space in real time. Visual tracking is to control a mobile robot to keep a moving target at the center of input image at all time. We made it possible by simplifying the relationship between the 2D image frame captured by a single camera and the 3D workspace frame. To precisely calculate the input vector (orientation and distance) of the mobile robot, the speed vector of the target is determined by eliminating the speed component caused by the camera motion from the speed vector appeared in the input image. The problem of temporary disappearance of the target form the input image is solved by selecting the searching area based on the linear prediction of target motion. The experimental results have shown that the proposed scheme can make a mobile robot successfully follow a moving target in real time.

A Capturing Algorithm of Moving Object using Single Curvature Trajectory (단일곡률궤적을 이용한 이동물체의 포획 알고리즘)

  • Choi Byoung-Suk;Lee Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.2
    • /
    • pp.145-153
    • /
    • 2006
  • An optimal capturing trajectory for a moving object is proposed in this paper based on the observation that a single-curvature path is more accurate than double-or triple-curvature paths. Moving distance, moving time, and trajectory error are major factors considered in deciding an optimal path for capturing the moving object. That is, the moving time and distance are minimized while the trajectory error is maintained as small as possible. The three major factors are compared for the single and the double curvature trajectories to show superiority of the single curvature trajectory. Based upon the single curvature trajectory, a kinematics model of a mobile robot is proposed to follow and capture the moving object, in this paper. A capturing scenario can be summarized as follows: 1. Motion of the moving object has been captured by a CCD camera., 2. Position of the moving object has been estimated using the image frames, and 3. The mobile robot tries to follow the moving object along the single curvature trajectory which matches positions and orientations of the moving object and the mobile robot at the final moment. Effectiveness of the single curvature trajectory modeling and capturing algorithm has been proved, through simulations and real experiments using a 2-DOF wheel-based mobile robot.

Optimal path planning for the capturing of a moving object

  • Kang, Jin-Gu;Lee, Sang-Hun;Hwang, Cheol-Ho;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1419-1423
    • /
    • 2004
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Optimal path planning for the capturing of a moving object

  • Hwang, Cheol-Ho;Lee, Sang-Hun;Ko, Jae-Pyung;Lee, Jang-Myung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.186-190
    • /
    • 2003
  • In this paper, we propose an algorithm for planning an optimal path to capture a moving object by a mobile robot in real-time. The direction and rotational angular velocity of the moving object are estimated using the Kalman filter, a state estimator. It is demonstrated that the moving object is tracked by using a 2-DOF active camera mounted on the mobile robot and then captured by a mobile manipulator. The optimal path to capture the moving object is dependent on the initial conditions of the mobile robot, and the real-time planning of the robot trajectory is definitely required for the successful capturing of the moving object. Therefore the algorithm that determines the optimal path to capture a moving object depending on the initial conditions of the mobile robot and the conditions of a moving object is proposed in this paper. For real-time implementation, the optimal representative blocks have been utilized for the experiments to show the effectiveness of the proposed algorithm.

  • PDF

Estimation of Distance and Direction for Tracking of the Moving Object

  • Kang, Sung-Kwan;Park, Jong-An
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.557-557
    • /
    • 2000
  • Tracking of the moving object, which is realized by the computer vision, is used for military and industrial fields. It is the application technique with imply complicated processing for understanding the input images. But, in these days, the most moving object tracking algorithms have many difficult problems. A typical problem is the increase of calculation time depending on target number. For this reason, there are many studies to solve real time processing problems and errors for background environmental change. In this paper, we used optical flow which is one of moving object tracking algorithms. It represents vector of the moving object. Optical flow estimation based on the regularization method depends on iteration method but it is very sensitive the noise. We proposed a new method using the Combinatorial Hough Transform (CHT) and Voting Accumulation in order to find optimal constraint lines. Also, we used the logical operation in order to release the operation time. The proposed method can easily and accurately extract the optical flow of moving object area and the moving information. We have simulated the proposed method using the test images. This images are included the noise. Experimental results show that the proposed method get better flow and estimate accurately the moving information.

  • PDF

The Efficient Spatio-Temporal Moving Pattern Mining using Moving Sequence Tree (이동 시퀀스 트리를 이용한 효율적인 시공간 이동 패턴 탐사 기법)

  • Lee, Yon-Sik;Ko, Hyun
    • The KIPS Transactions:PartD
    • /
    • v.16D no.2
    • /
    • pp.237-248
    • /
    • 2009
  • Recently, based on dynamic location or mobility of moving object, many researches on pattern mining methods actively progress to extract more available patterns from various moving patterns for development of location based services. The performance of moving pattern mining depend on how analyze and process the huge set of spatio-temporal data. Some of traditional spatio-temporal pattern mining methods[1-6,8-11]have proposed to solve these problem, but they did not solve properly to reduce mining execution time and minimize required memory space. Therefore, in this paper, we propose new spatio-temporal pattern mining method which extract the sequential and periodic frequent moving patterns efficiently from the huge set of spatio-temporal moving data. The proposed method reduces mining execution time of $83%{\sim}93%$ rate on frequent moving patterns mining using the moving sequence tree which generated from historical data of moving objects based on hash tree. And also, for minimizing the required memory space, it generalize the detained historical data including spatio-temporal attributes into the real world scope of space and time using spatio-temporal concept hierarchy.

The Camera Tracking of Real-Time Moving Object on UAV Using the Color Information (컬러 정보를 이용한 무인항공기에서 실시간 이동 객체의 카메라 추적)

  • Hong, Seung-Beom
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.18 no.2
    • /
    • pp.16-22
    • /
    • 2010
  • This paper proposes the real-time moving object tracking system UAV using color information. Case of object tracking, it have studied to recognizing the moving object or moving multiple objects on the fixed camera. And it has recognized the object in the complex background environment. But, this paper implements the moving object tracking system using the pan/tilt function of the camera after the object's region extraction. To do this tracking system, firstly, it detects the moving object of RGB/HSI color model and obtains the object coordination in acquired image using the compact boundary box. Secondly, the camera origin coordination aligns to object's top&left coordination in compact boundary box. And it tracks the moving object using the pan/tilt function of camera. It is implemented by the Labview 8.6 and NI Vision Builder AI of National Instrument co. It shows the good performance of camera trace in laboratory environment.

Optimal Path Planning of Mobile Robot for Multiple Moving Obstacles (복수의 동적 장애물에 대한 이동로봇의 최적경로설계)

  • Kim, Dae-Gwang;Kang, Dong-Joong
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.2
    • /
    • pp.183-190
    • /
    • 2007
  • The most important thing for navigation of a mobile robot is to find the most suitable path and avoid the obstacles in the static and dynamic environment. This paper presents a method to search the optimal path in start space extended to time domain with considering a velocity and a direction of moving obstacles. A modified version of $A^*$ algorithm has been applied for path planning in this work and proposed a method of path search to avoid a collision with moving obstacle in space-tim domain with a velocity and an orientation of obstacles. The velocity and the direction for moving obstacle are assumed as linear form. The simulation result shows that a mobile robot navigates safely among moving obstacles of constant linear velocity. This work can be applied for not only a moving robot but also a legged humanoid robot and all fields where the path planning is required.

  • PDF

The Rate of Change of an Energy Functional for Axially Moving Continua

  • Yang, Kyung-Jinn;Hong, Keum-Shik;Matsuno, Fumitoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2707-2712
    • /
    • 2003
  • In this paper, with the utilization of a three-dimensional version of Leibniz’s rule, the procedure of deriving the time rate of change of an energy functional for axially moving continua is investigated. It will be shown that the method in [14], which describes the way of getting the time rate of change of an energy functional in Eulerian description, and subsequent results in [10, 11] are not complete. The key point is that the time derivatives at boundaries in the Eulerian description of axially moving continua should take into account the velocity of the moving material itself. A noble way of deriving the time rate of change of the energy functional is proposed. The correctness of the proposed method has been confirmed by other approaches. Two examples, one-dimensional axially moving string and beam equations, are provided for the purpose of demonstration. The results following the procedure proposed and the results in [14] are compared.

  • PDF

Detection of a Land and Obstacles in Real Time Using Optimal Moving Windows (최적의 Moving Window를 사용한 실시간 차선 및 장애물 감지)

  • Choi, Sung-Yug;Lee, Jang-Myung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.3
    • /
    • pp.57-69
    • /
    • 2000
  • A moving window technique for detecting a lane and obstacles using the Images captured by a CCD camera attached in an automobile, is proposed in this paper To process the dynamic images in real time, there could be many constraints on the hardware To overcome these hardware constraints and to detect the lane and obstacles in real time, the optimal size of window IS determined based upon road conditions and automobile states. By utilizing the sub-Images inside the windows, detection of the lane and obstacles become possible m real time. For each Image frame, the moving windows are re-determined following the predicted directions based on Kalman filtering theory to Improve detection accuracy, as well as efficiency The feasibility of proposed algorithm IS demonstrated through the simulated experiments of highway driving.

  • PDF