• Title/Summary/Keyword: Moving Object Segmentation

Search Result 130, Processing Time 0.025 seconds

Data Fusion Using Image Segmentation in High Spatial Resolution Satellite Imagery

  • Lee, Jong-Yeol
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.283-285
    • /
    • 2003
  • This paper describes a data fusion method for high spatial resolution satellite imagery. The pixels located around an object edge have spectral mixing because of the geometric primitive of pixel. The larger a size of pixel is, the wider an area of spectral mixing is. The intensity of pixels adjacent edges were modified by the spectral characteristics of the pixels located inside of objects. The methods developed in this study were tested using IKONOS Multispectral and Pan data of a part of Jeju-shi in Korea. The test application shows that the spectral information of the pixels adjacent edges were improved well.

  • PDF

A Study on a Feature-based Multiple Objects Tracking System (특징 기반 다중 물체 추적 시스템에 관한 연구)

  • Lee, Sang-Wook;Seol, Sung-Wook;Nam, Ki-Gon;Kwon, Tae-Ha
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.11
    • /
    • pp.95-101
    • /
    • 1999
  • In this paper, we propose an adaptive method of tracking multiple moving objects using contour and features in surrounding conditions. We use an adaptive background model for robust processing in surrounding conditions. Object segmentation model detects pixels thresholded from local difference image between background and current image and extracts connected regions. Data association problem is solved by using feature extraction and object recognition model in searching window. We use Kalman filters for real-time tracking. The results of simulation show that the proposed method is good for tracking multiple moving objects in highway image sequences.

  • PDF

Real-Time Automatic Target Tracking Using the Centroid Moving Edges (이동경계의 무게중심에 의한 실시간 자동목표추적)

  • Bae, Jeoung-Hyo;Kim, Nam-Chul
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.10
    • /
    • pp.1234-1243
    • /
    • 1988
  • In this paper, a target tracking algorithm using the centroid of moving edges is presented. It aims to avoid the difficulty of image segmentation in case of extracting the centroid from only one frame. The proposed algorithm can more easily segment the target than the conventional one in images with complex background. Moreover, it can track the target well when the target is occluded by an object. The result of applying it to a real-time target tracker is shown to be comparatively good.

  • PDF

Segmentation of a moving object using binary phase extraction joint transform correlator technology (BPEJTC 기술을 이용한 이동 표적 영역화)

  • 원종권;차진우;이상이;류충상;김은수
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.88-96
    • /
    • 1997
  • As the need of automatized system has been increased recently together with the development of industrial and military technologies, the adaptive real-time target detection technologies that can be embedded on vehicles, planes, ships, robots and so on, are hgihly demanded. Accordingly, this paper proposes a novel approach to detect and segment the moving targets using the binary phase extraction joint transform correlator (BPEJTC), the advanced image subtraction filter and convex hull processing. The BPEJTC which was used as a target detection unit mainly for target tracking compensating the camera movement. The target region has been detected by processing the successful three frames using the advanced image subtraction filter, and has become more accurate by applying the developed convex hull filter. As shown by some experimental results, it is expected that the proposed approaches for compensation of the camera movement and segmentationof of target region, can be used for th emissile guiddance, aero surveillance, automatic inspectin system as well as the target detection unit of automatic target recognition system that request adaptive real-time processing.

  • PDF

Improved non-parametric Model for Moving object segmentation by null hypothesis (귀무가설을 이용한 비모수 움직임 영상 검출 모델의 개선)

  • Lee, Ki-Sun;Na, Sang-Il;Lee, Jun-Woo;Jeong, Dong-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.249-250
    • /
    • 2007
  • Background subtraction is a method typically used to segment moving regions in image sequences taken from a static camera by comparing each new frame to a model of the scene background. We present a improved non-parametric background model by null hypothesis. Evaluation shows that this approach achieves very sensitive detection with very low false alarm rates.

  • PDF

A study on Moving Object Segmentation (이동물체 분할에 관한 연구)

  • Jeo, Youngseok
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.07a
    • /
    • pp.349-351
    • /
    • 2012
  • 영상분할은 입력 영상에서 특정 영역을 분할하는 처리로서 이동물체추적, 영상 감시, 영상 기반 제어등 다양한 분야에서 중요하게 다루는 기술 중 한 가지이다. 기존 영상 분할 방법은 영역을 기반으로 하는 방법과 경계선을 기반으로 하는 방법 등이 있으며 경계선을 기반으로 이동물체 영역을 분할하는 것이 연산량 감소등 의 많은 이점이 있다. 그러나 영상의 경계가 모호한 경우 적용이 곤란하다. 본 논문에서는 이동벡터를 추출한 후 이동벡터를 분할기법을 제안하고자 한다. 입력영상에 대하여 BMA기법을 적용하여 이동벡터를 추출하여 이동벡터 영상을 구한 후, 이동 벡터영상에 워터쉐이드 기법을 적용하여 영상 분할하였다. 기존 경계선을 이용한 영상 분할과 비교한 결과 노이즈가 적은 결과를 얻었다.

  • PDF

Enhancement Techniques of Color Segmentation for Detecting Missing Persons in Smart Lighting System using Radar and Camera Sensors (레이다 및 카메라 내장형 스마트 조명에서 실종자 탐지용 색상 검출 향상 기법)

  • Song, Seungeon;Kim, Sangdong;Jin, Young-Seok;Lee, Jonghun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.25 no.3
    • /
    • pp.53-59
    • /
    • 2020
  • This paper proposes color segmentation for detecting missing persons in a smart lighting system using radar and camera sensors. Recently, smart lighting systems built-in radar and cameras have been efficient in saving energy and searching for missing persons, simultaneously. In smart lighting systems, radar detects moving objects and then the lights turn on and camera records. The video recorded is useful to find out missing persons. The color of their clothes worn in missing persons is one of critical hints to look for missing persons. Therefore, color segmentation is an effective means for detecting the color of their clothes. In this paper, during the color segmentation step, the ROI(Region of interest) setting based on the size of an object is applied and the background is reduced. According to experimental results, the color segmentation has good accuracy of more than 97%.

Design and Implementation of the Security System for the Moving Object Detection (이동물체 검출을 위한 보안 시스템의 설계 및 구현)

  • 안용학;안일영
    • Convergence Security Journal
    • /
    • v.2 no.1
    • /
    • pp.77-86
    • /
    • 2002
  • In this paper, we propose a segmentation algorithm that can reliably separate moving objects from noisy background in the image sequence received from a camera at the fixed position. Image segmentation is one of the most difficult process in image processing and an adoption in the change of environment must be considered for the increase in the accuracy of the image. The proposed algorithm consists of four process : generation of the difference image between the input image and the reference image, removes the background noise using the background nois modeling to a difference image histogram, then selects the candidate initial region using local maxima to the difference image, and gradually expanding the connected regions, region by region, using the shape information. The test results show that the proposed algorithm can detect moving objects like intruders very effectively in the noisy environment.

  • PDF

A Mode Selection Algorithm using Scene Segmentation for Multi-view Video Coding (객체 분할 기법을 이용한 다시점 영상 부호화에서의 예측 모드 선택 기법)

  • Lee, Seo-Young;Shin, Kwang-Mu;Chung, Ki-Dong
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.3
    • /
    • pp.198-203
    • /
    • 2009
  • With the growing demand for multimedia services and advances in display technology, new applications for 3$\sim$D scene communication have emerged. While multi-view video of these emerging applications may provide users with more realistic scene experience, drastic increase in the bandwidth is a major problem to solve. In this paper, we propose a fast prediction mode decision algorithm which can significantly reduce complexity and time consumption of the encoding process. This is based on the object segmentation, which can effectively identify the fast moving foreground object. As the foreground object with fast motion is more likely to be encoded in the view directional prediction mode, we can properly limit the motion compensated coding for a case in point. As a result, time savings of the proposed algorithm was up to average 45% without much loss in the quality of the image sequence.

Robust object tracking using projected motion and histogram intersection (투영된 모션과 히스토그램 인터섹션을 이용한 강건한 물체추적)

  • Lee, Bong-Seok;Moon, Young-Shik
    • The KIPS Transactions:PartB
    • /
    • v.9B no.1
    • /
    • pp.99-104
    • /
    • 2002
  • Existing methods of object tracking use template matching, re-detection of object boundaries or motion information. The template matching method requires very long computation time. The re-detection of object boundaries may produce false edges. The method using motion information shows poor tracking performance in moving camera. In this paper, a robust object tracking algorithm is proposed, using projected motion and histogram intersection. The initial object image is constructed by selecting the regions of interest after image segmentation. From the selected object, the approximate displacement of the object is computed by using 1-dimensional intensity projection in horizontal and vortical direction. Based on the estimated displacement, various template masks are constructed for possible orientations and scales of the object. The best template is selected by using the modified histogram intersection method. The robustness of the proposed tracking algorithm has been verified by experimental results.