• Title/Summary/Keyword: Moving Magnet

Search Result 209, Processing Time 0.027 seconds

Development of Moving Alternating Magnetic Filter Using Permanent Magnet for Removal of Radioactive Corrosion Product from Nuclear Power Plant

  • M. C. Song;Kim, S. I.;Lee, K. J.
    • Nuclear Engineering and Technology
    • /
    • v.34 no.5
    • /
    • pp.494-501
    • /
    • 2002
  • Radioactive Corrosion Products (CRUD) which are generated by the neutron activation of general corrosion products at the nuclear power plant are the major source of occupational radiation exposure. Most of the CRUD has a characteristic of showing strong ferrimagnetisms. Along with the new development and production of permanent magnet (rare earth magnet) which generates much stronger magnetic field than the conventional magnet, new type of magnetic filter that can separate CRUD efficiently and eventually reduce radiation exposure of personnel at nuclear power plant is suggested. This separator consists of inner and outer magnet assemblies, coolant channel and container surrounding the outer magnet assembly. The rotational motion of the inner and outer permanent magnet assemblies surrounding the coolant channel by driving motor system produces moving alternating magnetic fields in the coolant channel. The CRUD can be separated from the coolant by the moving alternating magnetic field. This study describes the results of preliminary experiment performed with the different flow rates of coolant and rotation velocities of magnet assemblies. This new magnetic filter shows better performance results of filtering the magnetite at coolant (water). How rates, rotating velocities of magnet assemblies and particle sizes turn out to be very important design parameters.

Analysis on Dynamic Characteristics for Moving-Magnet Linear Oscillatory Actuator with Cylindrical Halbach Array (원통형 Halbach 배열 영구자석을 갖는 가동자석형 LOA의 동특성 해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.11
    • /
    • pp.533-539
    • /
    • 2005
  • In the previous work, we performed the analysis of a tubular type moving-magnet linear oscillatory actuator (LOA) with cylindrical Halbach array by using 2-d analytical formulas and confirmed validity of analytical results by comparison of those with both finite element (FE) computation and experimental results. This paper deals with the dynamic characteristic analysis of the moving-magnet LOA with cylindrical Halbach array. Control parameters such as the thrust constant, the back-emf constant, resistance and inductance are obtained from both analytical and experimental results. And then, the dynamic simulation algorithm is established by the state and output equation obtained from voltage and motion equation. Finally, for various values of frequency, the dynamic simulation and experimental results for the characteristics of the voltage, current and displacement of moving-magnet LOA are presented. The simulation results are validated extensively by experiments. The experimental and simulation results for the variation of stroke according to control voltage are also presented for various values of frequency.

Development of a hull-plate moving robot with permanent magnets (영구자석을 이용한 선체 외판 주행 로봇 개발)

  • Kim, Eun-Young;Lee, Dong-Hoon;Kim, Ho-Kyeong
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.990-995
    • /
    • 2008
  • During the ship's construction process, most high place workings have been carried out by human power, like welding, grinding and so on. Because of the ability to relieve human beings from these, the need of developing a hull-plate moving robot has been rising. This paper describes a hull-plate moving robot, using magnet modules as the adhesive method. Magnet modules maintain the magnetic force between hull-plate and magnets constantly. So that allows the robot to perform movements on the curved plate without the loss of adhesive force. The robot consists of driving motors, control system and magnet modules. The performance of the robot is verified on the curved plate.

  • PDF

A New Moving-magnet Type Linear Actuator utilizing Flux Concentration Permanent Magnet Arrangement

  • Goto, Akira;Okamoto, Takuya;Ikariga, Atsushi;Todaka, Takashi;Enokizono, Masato
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.3
    • /
    • pp.342-348
    • /
    • 2012
  • This paper presents a moving-magnet type linear actuator designed by using flux concentration type permanent magnet arrangement, which can generate higher magnetic flux density in air-gap. In this construction, detent force which is induced by both slot-effect and end-effect becomes larger due to strong attractive forces. To reduce cogging force we have employed a modular mover structure of two magnetic pole sections connected with a center yoke. The improved motor performance is demonstrated with the prototype machine.

Mechanism Design of Optical Pickup Actuator for Fast Access of Optical Disk Drive (광디스크 드라이브의 고속 액세스를 위한 광픽업 액추에이터 메커니즘 설계)

  • 박준혁;이상헌;백윤수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.12
    • /
    • pp.109-119
    • /
    • 2002
  • In this paper, mechanism design of optical pickup actuator for fast access is proposed. This actuator is composed of moving magnet type actuator and moving coil type actuator for tracking and fine motion, respectively. Moving magnet type tracking actuator is configurated by two permanent magnets and four air-core solenoids. Additional damper by induced current in tracking actuator can reduce the transient vibration between the coarse seeking servo and fine seeking servo. Variable stiffness can be acquired by applying current to air-core solenoid simply. This actuator can achieve fast access by these additional damper and stiffness. Performance of this actuator is predicted through the FEM, simulation and simple experiment. Settling time for transient vibration is reduced to 14.7% according to simulation result.

The Improvement of Efficiency Performance for Moving Magnet Type Linear Actuator Using the Neural Network and Finite Element Method (신경회로망과 FEM을 이용한 가동 영구자석형 리니어 엑츄에이터의 성능 향상에 관한 연구)

  • 조성호;김덕현;김규탁
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.2
    • /
    • pp.63-68
    • /
    • 2004
  • This paper presents an approach to optimum design of Moving Magnet Type Linear Oscillatory Actuator(MM-LOA). The Finite Element Method is applied to characteristic parameters for characteristic analysis and in order to reduce modeling time and efforts, the moving model node technique is used. In addition the neural network is used to reduce computational time of analysis according to changing design variable. To confirm the validity of this study, optimum design results are compared with results of analysis procedure that is verified by experiment.

Design of Moving Magnet Type Optical Pickup Actuator (가동 자석형 광 픽업 엑추에이터 개발)

  • Kim, Sang-Ryong;Kim, Yoon-Ki;Song, Myong-Gyu;Woo, Jung-Hyun;Park, No-Cheol;Yoo, Jeong-Hoon;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.848-851
    • /
    • 2007
  • Recently, as the demand of the information storage devices with large storage capacity such as BD(Blu-ray Disk) and HDTV(high-definition television) is increased, the optical storage devices are also required to have fast data transfer rate and large storage capacity. To satisfy these requirements, the actuator for optical disk drive should have high flexible mode frequencies for system stability. In this paper, we suggested a moving magnet type actuator having high flexible mode frequency. However, the moving magnet type actuator does not have sufficient driving sensitivities due to the weight of its moving part. To improve driving sensitivities, we designed the model with the closed electromagnetic circuit for tracking direction. In addition, driving sensitivities and flexible mode frequencies were improved by using DOE(Design of Experiments) for magnetic circuit and modifying the lens holder. Consequently, it is confirmed that the designed model is satisfied with the desired specifications.

  • PDF

Optimization of the Permanent Magnet Shape in Moving Magnet Type Permanent Magnet Linear Synchronous Motor (Moving Magnet Type PMLSM의 영구자석 형상 최적화)

  • Lee, Dong-Yeup;Kim, Gyu-Tak
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.121-123
    • /
    • 2006
  • In this paper, the notch of teeth and skew of permanent magnet are used to reduce the detent force caused by slot-teeth structure. Also, the shape of permanent magnet is optimized to reduce the detent forceowing to flux hannonics components of permanent magnet. As a result, thrust is decrease about 2[%]. But, the distortion ratio of thrust is decreased from 1.04[%] to 0.75[%]. And, the ripple ratio of thrust is decreased from 2.6[%] to 1.65[%].

  • PDF

The Improvement of Performance for Moving Magnet type PMLSM by Permanent magnet Shape Optimization (영구자석 형상 최적화를 통한 Moving Magnet type PMLSM의 성능 향상)

  • Yoon, Kang-Jun;Lee, Dong-Yeup;Jung, Chun-Gil;Kim, Gyu-Tag
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.40-42
    • /
    • 2004
  • In this paper, optimum shape design of permanent magnet in slotted type Permanent Magnet Linear Synchronous Motor(PMLSM) is progressed for minimization of detent force owing to structure of slot-teeth and thrust ripple by harmonic magnetic flux of permanent magnet. The characteristics of thrust and detent force computed by Finite element Analysis are acquired equal effect both skewed basic model and optimum model which is optimization of permanent magnet shape.

  • PDF

Simulation of Quench in Pancake-shaped Superconducting Magnet Using a Quasi-three-dimensional Model

  • Wang, Qiuliang;Yoon, Cheon-Seog;Kim, Kee-Man
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.125-134
    • /
    • 2000
  • A quench phenomenon is caused by an external disturbance in a superconducting magnet, where the magnet is operating in a cryogenic environment. The heat coupling between the layers and pancakes of the magnet can induce the normal zone propagation with fast speed. In order to analyze quench behavior in a pancake-shaped superconducting magnet, a quasi-three-dimensional model is proposed. A moving mesh finite volume method is employed in solving the heat conduction equation. The quench process of the superconducting magnet is studied under the various operating conditions and cooling conditions.

  • PDF