• Title/Summary/Keyword: Moving Load analysis

Search Result 287, Processing Time 0.023 seconds

A Study on the Voltage Stability Direct Analysis reflecting Load Increase Pattern (부하의 증가 패턴을 고려한 전압 안정도 직접 해석에 관한 연구)

  • Moon, Y.H.;Choi, D.K.;Roh, T.H.;Lee, E.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.11a
    • /
    • pp.80-83
    • /
    • 1996
  • This paper develops a method for reliably estimating an UEP(Unstable Equilibrium Point) which is located in the direction of SEP(Stable Equilibrium Point)'s moving as system load is getting heavy. As power systems are getting loaded heavily, the SEP which is an operable solution, and the UEP which is occurring voltage collapse, are moving toward each other linearly. The estimated UEP is used as a good initial guess for the real UEP. The proposed method is tested by 3 bus system and Stagg 5 bus system. It is demonstrated that the proposed method is very useful for assessing system voltage stability in the case of heavy loaded power system. The result solutions are often used in conjunction with energy methods and the stability margin.

  • PDF

Stress Analysis of Truss Connection subjected to Moving Load Using Section Properties Factor (단면 수정계수를 이용한 이동 하중에 따른 트러스 연결부의 응력해석)

  • 이상호;배기훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.10a
    • /
    • pp.354-361
    • /
    • 2002
  • This paper propose section properties factor to generate stress history for fatigue analysis and safety inspection of steel bridge. A methodology is described for the computation of numerical stress histories in the steel truss bridge, caused by the vehicles using section properties factor. The global 3-D beam model of bridge is combined with the local shell model of selected details. Joint geometry is introduced by the local shell model. The global beam model takes the effects of joint rigidity and interaction of structural elements into account. Connection nodes in the global beam model correspond to the end cross-section centroids of the local shell model. Their displacements are interpreted as imposed deformations on the local shell model. The load cases fur the global model simulate the vertical unit force along the stringers. The load cases fer the local model are imposed unit deformations. Combining these, and applying vehicle loads, numerical stress histories are obtained. The method is illustrated by test load results of an existing bridge.

  • PDF

Evaluation of Convenience Equipment for Improve Work Efficiency and Preventing of Farm Work-Related Musculoskeletal Disorders (농작업자의 근골격계질환 예방과 작업 효율성 향상을 위한 농작업 편이장비의 평가)

  • Lee, Kyung-Suk;Kim, Kwan-Woo;Choi, Hae-Sun;Kim, Chang-Han;Nam, So-Young;Lee, Kyoung-Mi;Choi, Youn-Woo;Park, Keun-Sang
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.495-503
    • /
    • 2010
  • The packing and sorting processes of grape are required repetitive movements to need considerable physical load for a long time. And thereby, there is strong possibility to cause musculoskeletal disorders. In this study, ergonomically designed convenience equipments of worktable and handcart are introduced for improvement of the working movements and less physical load to increase the work efficiency. For objective analysis of the movements and the workload between the ones before and after the improvement, we measured heart rate, OWAS, RULA, REBA, LMM, moving Line and work time. Also, we used a checklist of physical fatigue regions to confirm the subjective evaluation of physical load of workers. As the result of study, it showed lower heart rate, value of Working Postures (OWAS, RULA, REBA) and LMM in the work after introduction of those convenient equipments than the work of before the introduction. The work time and moving Line were shortened and the number of grape boxes packed within the same work time was increased, too. Also the overall load as the subjective evaluation was reduced.

Finite Element Analysis of Continuous Beam Vibration under Pedestrian Loading Considering Moving Mass Effect (이동 질량 효과를 고려한 연속 보의 보행하중 진동 유한요소 해석)

  • Park, Wonsuk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.35 no.5
    • /
    • pp.309-316
    • /
    • 2022
  • This study proposes a finite element analysis method that can analyze the vibration of a beam by considering the inertia effect of moving masses in a vertical direction. The proposed method is effective when a precise interaction analysis is not required. The inertial effects of the moving masses are included in the equation of motion, and the interaction forces between the masses and the beam are considered only as external loads. Time domain analyses were performed using Abaqus, a general-purpose finite element analysis software, and an implementation method using multi-point constraints wais presented to link the displacements of the beam element nodes and moving rigid masses. The proposed method was verified by comparing its solution with that obtained using an existing analytical method, and the analysis results for continuous beam vibrations under dynamic gait loadings were used to examine the mass effect of pedestrians.

Theoretical Analysis on the Array Microphone Measurement for Noise from Rails (배열 마이크로폰을 이용한 레일 방사 소음 측정에 관한 이론 해석)

  • Ryue, Jungsoo;Jang, Seungho;Kwon, Hyu-Sang
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.4
    • /
    • pp.238-247
    • /
    • 2014
  • In this paper, rail vibration and its sound radiation are investigated, then the rail noise measurement by using microphone array is explored theoretically. A concrete slab track for domestic high speed trains is modeled as a Timoshenko beam on elastic support, regarding the moving of the excitation force on the rail. From the radiation characteristics of rail noise generated by a line source, the effect of moving load on sound radiation is obtained. Also it is found that the beam angle of the microphone array is a prominent factor to measure the rail noise level reliably because the rail noise propagates as a plane wave. In this investigation, a proper beam angle for the rail noise measurement by microphone array is suggested.

An Evaluation Study on the Dynamic Stability of High Speed Railway Bridges (고속철도교량의 동적안정성 평가연구)

  • Bang, Myung-Seok;Chung, Guang-Mo
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.4
    • /
    • pp.43-49
    • /
    • 2012
  • In the design of high speed railway bridges is important a impact factor as a tool of assessing the dynamic capacitys of bridges. However, the impact factor(or dynamic amplification factor, DAF) of high speed railway bridges may essentially be changeable because the dynamic response is affected by the long train length(380 m), number of axles and high speed velocity(300 km/h)(Korea Train eXpress: KTX). Therefore, on this study will be examined the dynamic capacity and stability of the typical PSC Box Girder of high speed railway bridge. At first, the static/dynamic analysis is performed considering the axle load line of KTX based upon existing references. Additionally, the KTX moving load is transformed into the dynamic time series load for conducting various parameter studies like axle length, analytical time increment, velocity of KTX. The time history analysis is repeatedly performed to get maximum dynamic responce by varying axle load length, analytical time increment, velocity of KTX. The study shows that dynamic analysis has resonable results with optimal axle load length(0.6 m) and time increment(0.01 sec.) and maximum DAF and dynamic resonance happens at 270 km/h velocity of KTX.

Analysis and Practical Application of Nonlinear Load Control Model for Swing of Pendulum (비선형 단진자 운동의 하중 모델 적용과 하중 제어 분석)

  • Wang, Hyun-Min;Woo, Kwang-Joon
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.47 no.3
    • /
    • pp.63-70
    • /
    • 2010
  • We are able to find many materials of pendulum dynamic/analysis using linearized model. Usually, analysis of pendulum is to calculate for velocity, period and angle by linearized model on Newton's law. In this paper, analyzed periodical movement of pendulum using nonlinear load model. That is, analyzed load value according to location of moving pendulum at real time. And for the shake of maneuver for pendulum's location, found load control value and compared result of linearized mode with nonlinear model. The result makes know that it is possibility of nonlinear load control model to apply to various model of movement object including flight object, pendulum and etc.

Database Construction to compute Representative Model of Load Power Factor in Large Scale Power System (대규모 전력계통의 부하역률 대표모델 산정을 위한 데이터베이스 구축)

  • Lee, Jung-Hee;Kim, Kwang-Wook;Cho, Jong-Man;Kim, Jin-O
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.209-211
    • /
    • 2002
  • This paper computes the regional, seasonal and hourly representative model of load power factor considering load characteristics of all 154/22.9 kV substations. An accurately computed representative model of load power factor is studied to present a precision improvement of power system analysis and the security of the system. The method to compute representative model of load utilizes the method of applicable moving average based on the method of flow average. The EMS data are used as the source to assess the load power factor.

  • PDF

Development of a New Analysis Method of Fluid Film for Efficient Estimate of the Moving Characteristics of Hydrostatic Bearings (유정압베어링 운동특성의 효과적인 예측을 위한 새로운 유막 해석방법의 개발)

  • 전상렬;김권희
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.8
    • /
    • pp.166-174
    • /
    • 2003
  • Hydrostatic bearings are widely used in precision machines due to their high motion guide accuracy, low friction and high load carrying capacity. It is very useful to estimate the moving characteristics of hydrostatic bearings in the design stage. A new method is suggested for the analysis of fluid film in hydrostatic bearings. A combined mesh of 8 node solid elements with negligible deformation resistance and spring-dashpot elements is used in conjunction with the user subroutine of ABAQUS to represent the fluid film. The mesh can be used to capture the deformation of the bearing structure as well as the varying properties of fluid film. Analysis results from the finite element model are compared with theoretical solutions, results from FLUENT analysis and some previous works. With this method, static and dynamic analyses of the system containing the bearings can be performed efficiently.

Dynamic Analysis of the Cracked Timoshenko Beam under a Moving Mass using Finite Element Method (유한요소법을 이용한 이동질량 하에 크랙을 갖는 티모센코 보의 동특성 연구)

  • Kang Hwan-Jun;Lee Shi-Bok;Hong Keum-Shik;Jeon Seung-Min
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.271-276
    • /
    • 2004
  • In this paper. dynamic behavior of the cracked beam under a moving mass is presented using the finite element method (FEM). Model accuracy is improved with the following consideration: (1) FE model with Timoshenko beam element (2) Additional flexibility matrix due to crack presence (3) Interaction forces between the moving mass and supported beam. The Timoshenko bean model with a two-node finite element is constructed based on Guyan condensation that leads to the results of classical formulations. but in a simple and systematic manner. The cracked section is represented by local flexibility matrix connecting two unchanged beam segments and the crack as modeled a massless rotational spring. The inertia force due to the moving mass is also involved with gravity force equivalent to a moving load. The numerical tests for various mass levels. crack sizes. locations and boundary conditions were performed.

  • PDF