• Title/Summary/Keyword: Moving Detection

Search Result 1,076, Processing Time 0.023 seconds

Development of an Edge-Based Algorithm for Moving-Object Detection Using Background Modeling

  • Shin, Won-Yong;Kabir, M. Humayun;Hoque, M. Robiul;Yang, Sung-Hyun
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.193-197
    • /
    • 2014
  • Edges are a robust feature for object detection. In this paper, we present an edge-based background modeling method for the detection of moving objects. The edges in the image frames were mapped using robust Canny edge detector. Two edge maps were created and combined to calculate the ultimate moving-edge map. By selecting all the edge pixels of the current frame above the defined threshold of the ultimate moving edges, a temporary background-edge map was created. If the frequencies of the temporary background edge pixels for several frames were above the threshold, then those edge pixels were treated as background edge pixels. We conducted a performance comparison with previous works. The existing edge-based moving-object detection algorithms pose some difficulty due to the changes in background motion, object shape, illumination variation, and noises. The result of the performance evaluation shows that the proposed algorithm can detect moving objects efficiently in real-world scenarios.

Optical Flow Measurement Based on Boolean Edge Detection and Hough Transform

  • Chang, Min-Hyuk;Kim, Il-Jung;Park, Jong an
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.1
    • /
    • pp.119-126
    • /
    • 2003
  • The problem of tracking moving objects in a video stream is discussed in this pa-per. We discussed the popular technique of optical flow for moving object detection. Optical flow finds the velocity vectors at each pixel in the entire video scene. However, optical flow based methods require complex computations and are sensitive to noise. In this paper, we proposed a new method based on the Hough transform and on voting accumulation for improving the accuracy and reducing the computation time. Further, we applied the Boo-lean based edge detector for edge detection. Edge detection and segmentation are used to extract the moving objects in the image sequences and reduce the computation time of the CHT. The Boolean based edge detector provides accurate and very thin edges. The difference of the two edge maps with thin edges gives better localization of moving objects. The simulation results show that the proposed method improves the accuracy of finding the optical flow vectors and more accurately extracts moving objects' information. The process of edge detection and segmentation accurately find the location and areas of the real moving objects, and hence extracting moving information is very easy and accurate. The Combinatorial Hough Transform and voting accumulation based optical flow measures optical flow vectors accurately. The direction of moving objects is also accurately measured.

Moving Object Segmentation-based Approach for Improving Car Heading Angle Estimation (Moving Object Segmentation을 활용한 자동차 이동 방향 추정 성능 개선)

  • Chiyun Noh;Sangwoo Jung;Yujin Kim;Kyongsu Yi;Ayoung Kim
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.130-138
    • /
    • 2024
  • High-precision 3D Object Detection is a crucial component within autonomous driving systems, with far-reaching implications for subsequent tasks like multi-object tracking and path planning. In this paper, we propose a novel approach designed to enhance the performance of 3D Object Detection, especially in heading angle estimation by employing a moving object segmentation technique. Our method starts with extracting point-wise moving labels via a process of moving object segmentation. Subsequently, these labels are integrated into the LiDAR Pointcloud data and integrated data is used as inputs for 3D Object Detection. We conducted an extensive evaluation of our approach using the KITTI-road dataset and achieved notably superior performance, particularly in terms of AOS, a pivotal metric for assessing the precision of 3D Object Detection. Our findings not only underscore the positive impact of our proposed method on the advancement of detection performance in lidar-based 3D Object Detection methods, but also suggest substantial potential in augmenting the overall perception task capabilities of autonomous driving systems.

Moving Object Detection Using SURF and Label Cluster Update in Active Camera (SURF와 Label Cluster를 이용한 이동형 카메라에서 동적물체 추출)

  • Jung, Yong-Han;Park, Eun-Soo;Lee, Hyung-Ho;Wang, De-Chang;Huh, Uk-Youl;Kim, Hak-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.1
    • /
    • pp.35-41
    • /
    • 2012
  • This paper proposes a moving object detection algorithm for active camera system that can be applied to mobile robot and intelligent surveillance system. Most of moving object detection algorithms based on a stationary camera system. These algorithms used fixed surveillance system that does not consider the motion of the background or robot tracking system that track pre-learned object. Unlike the stationary camera system, the active camera system has a problem that is difficult to extract the moving object due to the error occurred by the movement of camera. In order to overcome this problem, the motion of the camera was compensated by using SURF and Pseudo Perspective model, and then the moving object is extracted efficiently using stochastic Label Cluster transport model. This method is possible to detect moving object because that minimizes effect of the background movement. Our approach proves robust and effective in terms of moving object detection in active camera system.

A Study on Center Detection and Motion Analysis of a Moving Object by Using Kohonen Networks and Time Delay Neural Networks (코호넨 네트워크 및 시간 지연 신경망을 이용한 움직이는 물체의 중심점 탐지 및 동작특성 분석에 관한 연구)

  • Hwang, Jung-Ku;Kim, Jong-Young;Jang, Tae-Jeong
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.91-98
    • /
    • 2001
  • In this paper, center detection and motion analysis of a moving object are studied. Kohonen's self-organizing neural network models are used for the moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation. It is possible to distinguish 8 directions of a moving trajectory with two frames and 16 directions with three frames.

  • PDF

Algorithm for Detection of Fire Smoke in a Video Based on Wavelet Energy Slope Fitting

  • Zhang, Yi;Wang, Haifeng;Fan, Xin
    • Journal of Information Processing Systems
    • /
    • v.16 no.3
    • /
    • pp.557-571
    • /
    • 2020
  • The existing methods for detection of fire smoke in a video easily lead to misjudgment of cloud, fog and moving distractors, such as a moving person, a moving vehicle and other non-smoke moving objects. Therefore, an algorithm for detection of fire smoke in a video based on wavelet energy slope fitting is proposed in this paper. The change in wavelet energy of the moving target foreground is used as the basis, and a time window of 40 continuous frames is set to fit the wavelet energy slope of the suspected area in every 20 frames, thus establishing a wavelet-energy-based smoke judgment criterion. The experimental data show that the algorithm described in this paper not only can detect smoke more quickly and more accurately, but also can effectively avoid the distraction of cloud, fog and moving object and prevent false alarm.

Moving Object Detection Using Sparse Approximation and Sparse Coding Migration

  • Li, Shufang;Hu, Zhengping;Zhao, Mengyao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.5
    • /
    • pp.2141-2155
    • /
    • 2020
  • In order to meet the requirements of background change, illumination variation, moving shadow interference and high accuracy in object detection of moving camera, and strive for real-time and high efficiency, this paper presents an object detection algorithm based on sparse approximation recursion and sparse coding migration in subspace. First, low-rank sparse decomposition is used to reduce the dimension of the data. Combining with dictionary sparse representation, the computational model is established by the recursive formula of sparse approximation with the video sequences taken as subspace sets. And the moving object is calculated by the background difference method, which effectively reduces the computational complexity and running time. According to the idea of sparse coding migration, the above operations are carried out in the down-sampling space to further reduce the requirements of computational complexity and memory storage, and this will be adapt to multi-scale target objects and overcome the impact of large anomaly areas. Finally, experiments are carried out on VDAO datasets containing 59 sets of videos. The experimental results show that the algorithm can detect moving object effectively in the moving camera with uniform speed, not only in terms of low computational complexity but also in terms of low storage requirements, so that our proposed algorithm is suitable for detection systems with high real-time requirements.

Partial Fault Detection of an Air-conditioning System by using a Moving Average Neural Network

  • Han, Do-Young;Lee, Han-Hong
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.11 no.3
    • /
    • pp.125-131
    • /
    • 2003
  • The fault detection and diagnosis technology may be applied in order to decrease the energy consumption and the maintenance cost of the air-conditioning system. In this paper, two fault detection methods were considered. One is a generic neural network, and the other is an moving average neural network. In order to compare the performance of fault detection results from these methods, two different types of faults in an air-conditioning system were applied. These are the condenser 30% fouling and the evaporator fan 25% slowdown. Test results showed that the moving average neural network was more effective for the detection of partial faults in the air-conditioning system.

An Effective Moving Cast Shadow Removal in Gray Level Video for Intelligent Visual Surveillance (지능 영상 감시를 위한 흑백 영상 데이터에서의 효과적인 이동 투영 음영 제거)

  • Nguyen, Thanh Binh;Chung, Sun-Tae;Cho, Seongwon
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.4
    • /
    • pp.420-432
    • /
    • 2014
  • In detection of moving objects from video sequences, an essential process for intelligent visual surveillance, the cast shadows accompanying moving objects are different from background so that they may be easily extracted as foreground object blobs, which causes errors in localization, segmentation, tracking and classification of objects. Most of the previous research results about moving cast shadow detection and removal usually utilize color information about objects and scenes. In this paper, we proposes a novel cast shadow removal method of moving objects in gray level video data for visual surveillance application. The proposed method utilizes observations about edge patterns in the shadow region in the current frame and the corresponding region in the background scene, and applies Laplacian edge detector to the blob regions in the current frame and the corresponding regions in the background scene. Then, the product of the outcomes of application determines moving object blob pixels from the blob pixels in the foreground mask. The minimal rectangle regions containing all blob pixles classified as moving object pixels are extracted. The proposed method is simple but turns out practically very effective for Adative Gaussian Mixture Model-based object detection of intelligent visual surveillance applications, which is verified through experiments.

Detection of Objects Temporally Stop Moving with Spatio-Temporal Segmentation (시공간 영상분할을 이용한 이동 및 이동 중 정지물체 검출)

  • Kim, Do-Hyung;Kim, Gyeong-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.142-151
    • /
    • 2015
  • This paper proposes a method for detection of objects temporally stop moving in video sequences taken by a moving camera. Even though the consequence of missed detection of those objects could be catastrophic in terms of application level requirements, not much attention has been paid in conventional approaches. In the proposed method, we introduce cues for consistent detection and tracking of objects: motion potential, position potential, and color distribution similarity. Integration of the three cues in the graph-cut algorithm makes possible to detect objects that temporally stop moving and are newly appearing. Experiment results prove that the proposed method can not only detect moving objects but also track objects stop moving.