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ABSTRACT: The fault detection and diagnosis technology may be applied in order to de-
crease the energy consumption and the maintenance cost of the air-conditioning system. In

this paper, two fault detection methods were considered. One is a generic neural network, and

the other is an moving average neural network. In order to compare the performance of fault

detection results from these methods, two different types of faults in an air-conditioning sys-
tem were applied. These are the condenser 30% fouling and the evaporator fan 25% slow-
down. Test results showed that the moving average neural network was more effective for
the detection of partial faults in the air-conditioning system.

Nomenclature
b ! bias
P, : compressor outlet pressure [kg/cm®’]
P, : compressor inlet pressure [kg/cm?]

T, : condenser temperature [C]

T, : evaporator temperature [T]

T, : compressor outlet temperature [T]
T,  indoor air temperature [TC]

T,. : outdoor air temperature [C]

W synaptic weights

X ! input value

Y  : output value

Greek symbols

é . error
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1. Introduction

Total portion of the national energy consump-
tion by the air-conditioning system is rapidly
increasing. Considerable researches for the de-
velopment of energy saving technologies have
been performed in recent years. Among them,
application of the fault detection and diagnosis
(FDD) technology to the air-conditioning sys-
tem shows good opportunities to save energy
consumption.

In general, system faults may be detected
after complete breakdowns. Therefore, the un-
necessary energy consumption by partial faults
is prevailed. Intelligent fault detection and diag-
nosis schemes are necessary for the early de-
tection of partial faults.

To develop the FDD system, the use of low-
cost sensors is recommended. Temperature and
pressure sensors may be generally used for
economic reasons.

In recent years, Braun et al"® studied the
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effects of various parameters for partial faults
of an air-conditioning unit, and analyzed cost
saving possibilities by the early detection of
partial faults. Mclntosh et al® applied mathe-
matical models for the partial fault detection,
and Frank® suggested the use of the neural
network because of its self-learning and pat-
tern recognition capabilities. Ch'ng et al® also
utilized a neural network algorithm (NNA) to
detect defected products in the manufacturing
process.

In order to develop FDD algorithms for a
multi-type air-conditioning system, the fault
simulation system was developed. Neural net-
work algorithms were developed and tested by

using this system.(e)

2. Fault simulation system

A 5RT multi-type air-conditioning system
was designed and modified to simulate various
faults for the system. This fault simulation
system was installed in environmental cham-
bers. Chambers consisted of one outdoor cham-
ber and four indoor chambers. Desired envi-
ronmental conditions for these chambers were
controlled by a chamber control system, and
test data were obtained by a data acquisition
system.

Fig.1 shows the schematic diagram of a
multi-type air-conditioning system used for the

fault simulation. As shown in this figure, the
fault simulation system was composed of two
major parts. An outdoor unit consisted of a
compressor, an oil separator, a condensing unit,
a condensing fan, a receiver tank, and an ac-
cumulator. Four indoor units consisted of elec-
tronic expansion valves, evaporator units, and
evaporator fans.

For this study, two types of faults at an
air-conditioning system were considered. These
faults are the condenser fouling and the eva-
porator fan slowdown.

The condenser fouling represents the con-
denser surface pollution by various polluting
materials, and results in the net loss of the
surface area and the air flow rate at the con-
densing coil. This fault was simulated by
blocking the condenser surface area. The level
of the fouling was simulated by the level of
the condenser frontal area blockage.

The evaporator fan slowdown represents the
decrease of air flow rates at evaporator coils
by damaged fan motors. This fault was simu-
lated by equally reducing the speed of four
variable~-speed fans. The level of a fan slow-
down was simulated by the reduction of air-
flow rate against the nominal airflow rate.

The location of the temperature and the
pressure sensors is also shown in Fig. 1. Data
from these sensors were obtained through the
data acquisition system. T-type thermocouples
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Fig. 1 Fauit simulation system.
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were used to measure temperatures, and pres-—
sure transducers were used to measure pres-
sures.

3. FDD system

The model based method using NNA was
selected for the fault detection of the air-con-
ditioning system. Fig.2 shows the fault detec-
tion scheme, which is composed of inputs, a
data preprocessor, NNA, and outputs. Compared
with a generic neural network, the data pre-
processor was added. Five temperature and two
pressure informations were used as inputs, and
outputs were classified as the normal operation
(no fault), the condenser fouling, and the evapo-
rator fan slowdown.

3.1 Data preprocessor

The data preprocessor plays an important

Tout
Tin No
Fault
Data Neural
Pre- Network Congenser
processor Algorithm Fouling
Evaporator
Ph Fan
Slowdown

Fig. 2 Fault detection scheme.
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Fig. 3 Neural network architecture.

role for reducing the noise effects from on-line
input data.” The moving average method was
used for this study. At every 5-second time
internal, new data were obtained and recently
obtained five data sets were averaged in order
to use as input data.

3.2 Neural network algorithm

Fig.3 shows the NNA structure selected for
this study. Tout: Tim Th: TC, Te, Ph’ and P/,

are seven inputs, and F is the activation func-
tion. The neural network is composed of one
input layer, two hidden layers, and one output
layer. The first hidden layer has the seven
neurons and uses the tangent-sigmoid activa-
tion function, and the second hidden layer has
four neurons and uses the log-sigmoid activa-
tion function. The output layer has three neu-
rons and uses the linear activation function.

3.3 Neural network training

In order to train the neural network, experi-
mental data obtained under the normal! condi-
tion, the condenser fouling condition, and the
evaporator fan slowdown condition were used.
Data used for the neural network training con-
sists of uniformly spaced 18 data sets.®’ The in-
door and outdoor relative humidities were 41%
and 50%, respectively. The indoor air tempera-
ture was between 21°C and 37T, and the out-
door air temperature was between 25C and 40
C. Table 1, 2, and 3 show the five sets of
data among eighteen sets of data obtained for
the normal operation, the condenser 30% foul-
ing operation, and the evaporator fan 25% slow-
down operation.

Values for synaptic weights and biases were
calculated by a back-propagation algorithm. Fig.
4 shows the back-propagation algorithm. Syna-
ptic weight and bias values are initialized, and
target values and error limits are set. After cal-
culating output values by given activation func-
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Table 1 No fault data sets

Setl Set2 Set3 Setd Setb
T, 3643 3643 3643 3643 3643
T, 1677 2131 2450 2889 3249
T, 10801 11286 11422 11549 117.89
T. 4465 4516 4552 4544 4590
T, 08 253 347 500 605
P, 1763 1780 1789 1792 1805
P, 335 347 356 368 373

Table 2 Condenser fouling data sets

Setl Set2 Set3 Setd Setd
T,. 3618 3618 3618 3618 36.18
T, 1771 2133 2539 2856 31.8
T, 10926 11572 12065 12219 12328
T, 4589 4708 4773 4724 4125
T, 0.87 2.08 3.26 3.84 471
P, 1814 1866 1900 1880 18.80
P, 3.35 349 356 3.63 3.68

Table 3 Evaporator fan slowdown data sets

Setl Set2 Set3 Set4 Setb

T,. 3536 3536 3536 3536 3536
T, 1811 2168 2600 2984 33.23
T, 9623 9583 9624 9905 100.46
T. 4181 4202 4235 4350 4350
T, -38 -347 -239 -108 -040
P, 1630 1637 1653 1698 1727
P, 268 269 276 287 29
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Fig. 4 Back-propagation algorithm.

tions, values for synaptic weights and biases
are modified repeatedly until calculated errors
(68;) are within given tolerance error boun-
daries ( 8). For this study, tolerance error boun-
daries were set to 10~° and output target values
were set to [1 0 0]" for the normal operation,
[0 1 0]" for the condenser fouling operation, and
{0 0 11" for the evaporator fan slowdown opera-
tion.

4. Test results

In order to verify the fault detection algo-
rithm, outdoor test conditions were 35C and
41% (RH), and indoor test conditions were 24C
and 50% (RH).

Figs.5 and 6 show temperature and pressure
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Fig. 5 Various temperatures at the 3026 con-
denser fouling test.
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Fig. 6 Various pressures at the 30% conden-
ser fouling test.
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readings from a condenser fouling simulation
test.

Fig.7 shows fault detection results for the
case of using a generic neural network. The
first 1000-second time interval was assumed
as a preparation period. The normal operation
test was started since the first 1000 seconds
and lasted for the next 1000 second. The con-
denser 30% fouling test was started from the
2100th second and lasted for the next 1500 se-
conds.

Fig.8 shows the fault detection results for
the case of using a data preprocessor. The
Fault detection rate is defined as the percent-
age of detected faults for a given time period

4.5

T

3.5 N Condenser touling

h {Detection limit=+5%)

3 M 50/320=0.156
»23
2 e
¢, . No fault
< M ° Do 4 T i
g ¢ . K
Tistos R 8 .
2 d s o 8
? Bad Coimy gop s LT e
5 Prg v O s° o -
0l N -
Wwast} . . o

= c e
o =y 3 P Y
0.5 L2
3 510 e 1500 200 2500 3000 3500 4000
Time(sea?

Fig. 7 Fault detection results at the 30% con-
denser fouling test without the data pre-
processor.
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Fig. 8 Fault detection results at the 30% con-
denser fouling test with the data pre-
processor.

by assuming the 5% fault tolerance interval.
Compared with the result of Fig.7, the result
of Fig.8 shows the performance improvement
from 84.4% to 95.9% of detection rate. The
moving average neural network improved the
detection rate by 11.5%.

Figs.9 and 10 show temperature and pres-
sure readings from the simulation test of eva-
porator fan 25% slowdown.

Fig. 11 shows the fault detection results for
the case of using the generic neural network.
The first 1000-second time interval was assum-—
ed as a preparation period. The normal opera-
tion test was performed between the 1000th
second and the 2200th second. The evaporator
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Fig. 9 Various temperatures at the 25% eva-
porator fan slowdown test.
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Fig. 10 Various pressures at the 25% evapo-
rator fan slowdown test.
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Evaporator fan slowdown
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Fig. 11 Fault detection results at the 25%
evaporator fan slowdown test without
the data preprocessor.
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Fig. 12 Fault detection results at the 25%
evaporator fan slowdown test with the

data preprocessor.
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Fig. 13 Various temperatures at the 30% con-
denser fouling and the 25% evaporator
fan slowdown test.
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Fig. 14 Various pressures at the 30% con-
denser fouling and the 25% evaporator
fan slowdown test.

4.5 . t
( Evaporator tan{slowdown i} '
dte (Detection fimit=15%) | p— '
£ 07260=0.0 -‘:g
3.5 a8 : 1
3 L;° Condenser.lloulino l:o
e, (Detection linjit=45%) !
£ 32/262=0.122 S
8 H ! j
) :
% .'o No fault ‘,
215 | i
A | § !
S ¥ .
B ;
0.5 1
o Hotm - 3 \
s . e
o 1000 2000 3000 4000 5000 8000 7000 8000
Timelsec)

Fig. 15 Fault detection results at the 30% con-
denser fouling and the 25% evaporator
fan slowdown test without the data
preprocessor.
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fan 259% slowdown test was performed be-
tween the 2300th second and the 3700th se-
cond.

Fig. 12 shows the fault detection results for
the case of using the data preprocessor. Com-
pared with the result of Fig.1l, the result of
Fig.12 shows the performance improvement
from 982% to 100% of detection rate. The
moving average neural network improved the
detection rate by 1.8%.

Figs. 13 and 14 show temperature and pres-—
sure readings from the simulation test of nor-
mal operation, condenser 30% fouling, and eva-
porator fan 25% slowdown.

Fig. 15 shows fault detection results for the
case of using the generic neural network. After
the first 1000-second preparation time interval,
the normal operation test was performed for the
next 2500-second time interval, and the con-
denser 30% fouling was followed by the 3600th
second for the next 1300-second time interval.
And then, the normal operation test was per—
formed for the next 400-second time interval,
and the evaporator fan 25% slowdown test was
followed from the 5400th second for the next
1300-second time interval.

Fig. 16 shows the fault detection results for
the case of using the data preprocessor. Com-
pared with the result of Fig. 15, the result of
Fig. 16 shows the performance improvement.

5. Conclusions

A moving average neural network was de-
veloped. The selected architecture of the neural
network was a [7X7X4X3] structure. Selected
input variables were various temperature and
pressure readings. Input data were filtered
through the preprocessor by a moving average
method.

Performances of the developed system using
preprocessor was compared with those of a
generic neural network by experimental tests.

Test results showed that the moving average
neural network was outperformed the generic
neural network in the detection of the con-
denser fouling by 11.5% and the evaporator fan
slowdown by 1.8%. Therefore, the developed
moving average neural network may be effec—
tively used for the partial fault detection of the
air-conditioning system.
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