• Title/Summary/Keyword: Moving Boundary

Search Result 575, Processing Time 0.03 seconds

NUMERICAL SIMULATION OF THREE-DIMENSIONAL DENDRITIC GROWTH WITH FLUID CONVECTION (유체 유동을 동반한 수치상결정 미세구조의 3차원 성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.355-362
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid to solid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material which governs the physical properties of final product. In this paper, we expand our previous two-dimensional numerical technique to three-dimensional simulation for computing dendritic solidification process with fluid convection. We used Level Contour Reconstruction Method to track the moving liquid-solid interface and Sharp Interface Technique to correctly implement phase changing boundary condition. Three-dimensional results showed clear difference compared to two-dimensional simulation on tip growth rate and velocity.

  • PDF

Thermal Analysis of Mg2Cu Hydride (Mg2 hydride의 열분석)

  • Han, Jeong-Seb
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.2 no.1
    • /
    • pp.1-6
    • /
    • 1990
  • The desorption kinetics of $Mg_2Cu$ hydride were studied by thermal analysis technique in order to study desorption behavior and to relate thermal desorpton spectra to occuption site of hydrogen. It is suggested that a continuous ${\alpha}/{\beta}$ interface boundary is formed at the initial absorption stage. And the desorption kinetics were analysed by the theoretical equation which was derived on the basis of continous moving boundary model. The number of thermal desorption peak corresponds to the occupation sites of hydrogen. The apparent activation energy for the desorption of $Mg_2Cu$ hydride is 91 KJ/mol.

  • PDF

Simultaneous measurement of velocity fields of wind-blown sand and surrounding wind in an atmospheric boundary layer

  • Zhang W.;Wang Y.;Lee S. J.
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.11-16
    • /
    • 2005
  • Saltation is the most important mechanism of wind-blown sand transport. Till now the interaction between wind and sand has not been fully understood. In this study the saltation of sand sample taken from Taklimakan desert was tested in a simulated atmospheric boundary layer. The captured particle images containing both the tracers for wind and saltating sand, were separated by a digital phase mask technique. Both PIV and PTV methods were employed to extract the velocity fields of wind and the dispersed sand particles, respectively. The mean streamwise wind velocity field and turbulent statistics with and without sand transportation were compared, revealing the effect of the moving sand on the wind field. This study is helpful to understand the interaction between wind and blown sand (in saltation), and provide reliable experimental data fur evaluating numerical models.

  • PDF

Study on the Aerodynamic Characteristics of Wings Flying Over the Nonplanar Ground Surface

  • Han, Cheol-Heui;Lee, Kye-Beom;Cho, Jin-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.2
    • /
    • pp.82-87
    • /
    • 2002
  • Aerodynamic analysis of NACA wings moving with a constant speed over guideways are performed using an indirect boundary element method (potential-based panel method). An integral equation is obtained by applying Green's theorem on all surfaces of the fluid domain. The surfaces over the wing and the guideways are discretized as rectangular panel elements. Constant strength singularities are distributed over the panel elements. The viscous shear layer behind the wing is represented by constant strength dipoles. The unknown strengths of potentials are determined by inverting the aerodynamic influence coefficient matrices constructed by using the no penetration conditions on the surfaces and the Kutta condition at the trailing edge of the wing. The aerodynamic characteristics for the wings flying over nonplanar ground surfaces are investigated for several ground heights.

Acoustic Analysis of Axial Fan using BEM based on Kirchhoff Surface (Kirchhoff Surface를 이용한 Fan 소음 해석)

  • Park Y.-M.;Lee S.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.763-766
    • /
    • 2002
  • A BEM is highly efficient method in the sense of economic computation. However, boundary integration is not easy for the complex and moving surface e.g. in a rotating blade. Thus, Kirchhoff surface is designed in an effort to overcome the difficulty resulting from complex boundary conditions. A Kirchhoff surface is a fictitious surface which envelopes acoustic sources of main concern. Acoustic sources may be distributed on each Kirchhoff surface element depending on its acoustic characteristics. In this study, an axial fan is assumed to have loading noise as a dominant source. Dipole sources can be computed based on the FW-H equation. Acoustic field is then computed by changing Kirchhoff surface on which near-field is implemented, to analyze the effect of Kirchhoff surface on it.

  • PDF

Steady Aerodynamic Characteristics of a Wing Flying Over a Nonplanar Ground Surface Part I : Rail

  • Han Cheol-Heui;Kim Hak-Ki;Cho Jin-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1043-1050
    • /
    • 2006
  • The aerodynamic interaction between a wing and a rail is investigated using a boundary-element method. The source and doublet singularities are distributed on the wing and its guide-way rail surface. The unknown strengths of the singularities are determined by inverting the aerodynamic influence coefficient matrices. Present method is validated by comparing computed results with the other numerical data. Rail width and rail height affect the aerodynamic characteristics of the wing only if the rail is narrower than the wing span. Although the present results are limited to the inviscid, irrotational flows, it is believed that the present method can be applied to the conceptual design of the high speed ground transporters moving over the rail.

Two-Dimensional Analysis of Pressure Distribute by Underwater Electric Discharge (수중방전에 의한 압력분포의 2차원 해석)

  • Kim, Y.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.1
    • /
    • pp.68-77
    • /
    • 1995
  • The two-dimensional pressure distribution, which is the most important parameter in the casting cleaning installations(CCI), was analyzed using the K-FIX computer program for two-phase flow. Modelling was done using R-Z coordinates for the initial and boundary conditions which don't have periodic influx and efflux, and also there was the electric discharge due to high pressure and temperature. The marked particles were introduced to prodict the structure and the size of main and local moving surfaces. The initial and boundary conditions were modified due to the internal structure of CCI.From the results of numerical analysis, it was shown that the maximum pressure on casting was increased with the increase of a water level. The pressure on casting in the radial direction was higher than that in axial direction. Also, it was proved that by introducing the marked particles it was possible to predict the surface structure in case of two-phase flow.

  • PDF

Numerical Simulation of Dendritic Growth of the Multiple Seeds with Fluid Flow (유체 유동을 동반한 다핵 수치상결정의 미세구조성장에 대한 수치해석적 연구)

  • Yoon, Ik-Roh;Shin, Seung-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.7
    • /
    • pp.469-476
    • /
    • 2009
  • Most material of engineering interest undergoes solidification process from liquid state. Identifying the underlying mechanism during solidification process is essential to determine the microstructure of material thus the physical properties of final product. In this paper, effect of fluid convection on the dendrite solidification morphology is studied using Level Contour Reconstruction Method. Sharp interface technique is used to implement correct boundary condition for moving solid interface. The results showed good agreement with exact boundary integral solution and compared well with other numerical techniques. Effects of Peclet number and undercooling on growth of dendrite tip of both single and multiple seeds have been also investigated.

An Analysis of Aircraft Engine Inlet Acoustic Fields by using Finite Element Method (유한 요소법을 이용한 비행기 엔진 입구 음향장 해석)

  • 전완호;이덕주
    • Journal of KSNVE
    • /
    • v.8 no.1
    • /
    • pp.122-131
    • /
    • 1998
  • Internal and external acoustic fields of the engine inlet are calculated by using a finite element method. The far fields non reflecting boundary condition is enforced by using a wave envelope element, which is a kind of infinite element. The geometry is assumed an axisymetric duct. Sources of the fan are modeled by the Tyler and Sofrin's theory. Effects of uniformly moving medium are considered. A pulsating sphere and an oscillating piston problem are calculated to verify the external problems, and compared with exact solutions. When the wave envelope element is applied at the far boundary, the calculated finite element solutions show good agreements with the exact solutions. The engine inlet is solved with the combined internal and external grid. The cut-off phenomena on engine inlet duct are observed.

  • PDF

A Study on charge accumulation and relaxation phenomena by D.C energization in insulating oil (직류 전계 인가에 따른 절연유의 전하 축적 및 완화 현상에 관한 연구)

  • Kim, C.W.;Lim, H.C.;Kim, Y.W.;Shin, T.H.;Huh, C.S.;Lee, D.C.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1633-1635
    • /
    • 1996
  • This phenomena of streaming-electrification is generated between solid and liquid boundary called electric double-layer which is generated by potential difference. A charge separation at interfaces between a moving fluid and a solid boundary can give rise to the generation of substantial electric field and at last these can give rise ta insulating failure. Therefore injection of the adverse-charge in streaming-electrified insulating oil to eliminate the accumulation charge and its related phenomena was investigated.

  • PDF