• Title/Summary/Keyword: Moving Boundary

Search Result 575, Processing Time 0.026 seconds

IMPLEMENTATION OF IMMERSED BOUNDARY METHOD TO INCOMPRESSIBLE NAVIER-STOKES SOLVER USING SIMPLE ALGORITHM (SIMPLE Algorithm기반의 비압축성 Navier-Stokes Solver를 이용한 Immersed Boundary Method의 적용)

  • Kim, G.H.;Park, S.O.
    • Journal of computational fluids engineering
    • /
    • v.17 no.1
    • /
    • pp.44-53
    • /
    • 2012
  • Immersed boundary method(IBM) is a numerical scheme proposed to simulate flow field around complex objectives using simple Cartesian grid system. In the previous studies, the IBM has mostly been implemented to fractional step method based Navier-Stokes solvers. In this study, we implement the IBM to an incompressible Navier-Stokes solver which uses SIMPLE algorithm. The weight coefficients of the bi-linear and quadratic interpolation equations were formulated by using only geometric information of boundary to reconstruct velocities near IB. Flow around 2D circular cylinder at Re=40 and 100 was solved by using these formulations. It was found that the pressure buildup was not observed even when the bi-linear interpolation was adopted. The use of quadratic interpolation made the predicted aerodynamic forces in good agreement with those of previous studies. For an analysis of moving boundary, we smulated an oscillating circular cylinder with Re=100 and KC(Keulegan-Carpenter) number of 5. The predicted flow fields were compared with experimental data and they also showed good agreements.

On the absolute maximum dynamic response of a beam subjected to a moving mass

  • Lotfollahi-Yaghin, Mohammad Ali;Kafshgarkolaei, Hassan Jafarian;Allahyari, Hamed;Ghazvini, Taher
    • Structural Engineering and Mechanics
    • /
    • v.54 no.1
    • /
    • pp.55-67
    • /
    • 2015
  • Taking the mid-span/center-point of the structure as the reference point of capturing the maximum dynamic response is very customary in the available literature of the moving load problems. In this article, the absolute maximum dynamic response of an Euler-Bernoulli beam subjected to a moving mass is widely investigated for various boundary conditions of the base beam. The response of the beam is obtained by utilizing a robust numerical method so-called OPSEM (Orthonormal Polynomial Series Expansion Method). It is underlined that the absolute maximum dynamic response of the beam does not necessarily take place at the mid-span of the beam and thus the conventional analysis needs modifications. Therefore, a comprehensive parametric survey of the base beam absolute maximum dynamic response is represented in which the contribution of the velocity and weight of the moving inertial objects are scrutinized and compared to the conventional version (maximum at mid-span).

Dynamic stiffness approach and differential transformation for free vibration analysis of a moving Reddy-Bickford beam

  • Bozyigit, Baran;Yesilce, Yusuf
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.847-868
    • /
    • 2016
  • In this study, the free vibration analysis of axially moving beams is investigated according to Reddy-Bickford beam theory (RBT) by using dynamic stiffness method (DSM) and differential transform method (DTM). First of all, the governing differential equations of motion in free vibration are derived by using Hamilton's principle. The nondimensionalised multiplication factors for axial speed and axial tensile force are used to investigate their effects on natural frequencies. The natural frequencies are calculated by solving differential equations using analytical method (ANM). After the ANM solution, the governing equations of motion of axially moving Reddy-Bickford beams are solved by using DTM which is based on Finite Taylor Series. Besides DTM, DSM is used to obtain natural frequencies of moving Reddy-Bickford beams. DSM solution is performed via Wittrick-Williams algorithm. For different boundary conditions, the first three natural frequencies that calculated by using DTM and DSM are tabulated in tables and are compared with the results of ANM where a very good proximity is observed. The first three mode shapes and normalised bending moment diagrams are presented in figures.

Effect of moving load on dynamics of nanoscale Timoshenko CNTs embedded in elastic media based on doublet mechanics theory

  • Abdelrahman, Alaa A.;Shanab, Rabab A.;Esen, Ismail;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.255-270
    • /
    • 2022
  • This manuscript illustrates the dynamic response of nanoscale carbon nanotubes (CNTs) embedded in an elastic media under moving load using doublet mechanics theory, which not considered before. CNTs are modelled by Timoshenko beam theory (TBT) and a bottom to up modelling nano-mechanics is simulated by doublet mechanics theory to capture the size effect of CNTs. To explore the influence of the CNTs configurations on the dynamic behaviour, both armchair and zigzag configurations are considered. The governing equations of motion and the associated boundary conditions are obtained using the Hamiltonian principle. The Navier solution methodology is applied to obtain the solutions for both orientations. Free vibration and forced response under moving loads are considered. The accuracy of the developed procedure is verified by comparing the obtained results with available previous algorithms and good agreement is observed. Parametric studies are conducted to demonstrate effects of doublet length scale, CNTs configurations, moving load velocities as well as the elastic media parameters on the dynamic behaviours of CNTs. The developed procedure is supportive in the design and manufacturing of MEMS/NEMS made from CNTs.

A study on the lateral Dynamics of the Moving Web Induced by a Tilted Roller (웹 표면 수직방향으로 기우러진 롤에 의한 측 방향 웹 거동에 대한 연구)

  • Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.209-216
    • /
    • 2000
  • The lateral behavior of the moving web is critical to the quality of the web products. The alignment of the rollers carrying the web is found to be one of important factors to the lateral behavior of the moving web. But, the study on the effect of the tilting roller in the direction of the normal to the moving web on the lateral behavior has not been reported in the literature yet. For example, the contact roller often contacts the winding roll in a tilted fashion and causes the lateral motion of the winding web, which induces the offset on the wound roll. The lateral dynamics of the moving web induced by a tilted roller in normal direction of a web is investigated in this paper. The two-dimensional dynamic model developed by Shelton is extended to investigate the effect of a titled roller in a normal direction of the moving web on the lateral motion of the moving web. New boundary conditions are developed to solve the extended model. Computer simulation study proved that the model developed can be used to predict the lateral motion of the moving web ? to a tilted roller in normal direction of the moving web. The lateral deflection is increased exponentially a the tilting angle is increased. As the length of web span is increased, the amount of lateral deflection was increased almost linearly for the same tilting angle. The lateral dynamics turned out to be almost independent to the operating tension. The model developed can be used to solve the offset problem of the staggered winding and also to design a new web guiding mechanism.

  • PDF

A Study on Tracking a Moving Object using Photogrammetric Techniques - Focused on a Soccer Field Model - (사진측랑기법을 이용한 이동객체 추적에 관한 연구 - 축구장 모형을 중심으로 -)

  • Bae Sang-Keun;Kim Byung-Guk;Jung Jae-Seung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.2
    • /
    • pp.217-226
    • /
    • 2006
  • Extraction and tracking objects are fundamental and important steps of the digital image processing and computer vision. Many algorithms about extracting and tracking objects have been developed. In this research, a method is suggested for tracking a moving object using a pair of CCD cameras and calculating the coordinate of the moving object. A 1/100 miniature of soccer field was made to apply the developed algorithms. After candidates were selected from the acquired images using the RGB value of a moving object (soccer ball), the object was extracted using its size (MBR size) among the candidates. And then, image coordinates of a moving object are obtained. The real-time position of a moving object is tracked in the boundary of the expected motion, which is determined by centering the moving object. The 3D position of a moving object can be obtained by conducting the relative orientation, absolute orientation, and space intersection of a pair of the CCD camera image.

Thermal vibration analysis of thick laminated plates by the moving least squares differential quadrature method

  • Wu, Lanhe
    • Structural Engineering and Mechanics
    • /
    • v.22 no.3
    • /
    • pp.331-349
    • /
    • 2006
  • The stresses and deflections in a laminated rectangular plate under thermal vibration are determined by using the moving least squares differential quadrature (MLSDQ) method based on the first order shear deformation theory. The weighting coefficients used in MLSDQ approximation are obtained through a fast computation of the MLS shape functions and their partial derivatives. By using this method, the governing differential equations are transformed into sets of linear homogeneous algebraic equations in terms of the displacement components at each discrete point. Boundary conditions are implemented through discrete grid points by constraining displacements, bending moments and rotations of the plate. Solving this set of algebraic equations yields the displacement components. Then substituting these displacements into the constitutive equation, we obtain the stresses. The approximate solutions for stress and deflection of laminated plate with cross layer under thermal load are obtained. Numerical results show that the MLSDQ method provides rapidly convergent and accurate solutions for calculating the stresses and deflections in a multi-layered plate of cross ply laminate subjected to thermal vibration of sinusoidal temperature including shear deformation with a few grid points.

Longitudinal Vibration Analysis of an Axially Moving Material by Using the Assumed Modes Method (가정모드법을 이용한 축방향으로 이동하는 연속체의 종진동 해석)

  • Huh, Jin-Wook;Chung, Jin-Tai;Han, Chang-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.619-624
    • /
    • 2000
  • Longitudinal vibration of an axially moving material is investigated by using the assumed modes method. to circumvent a difficulty in choosing the comparison functions which satisfy the boundary conditions the assumed modes method is adopted by which equations of motion are discretized. Based on the discretized equations, the complex eigenvalue problem is solved and then the effects of the translating velocity on the natural frequencies and modes are analyzed.

  • PDF

Electromagnetic Scattering by a Plasma Column Moving in the Perpendicular Direction to Its Axis (축과 수직방향으로 운동하는 프라즈마원주에 의한 평면전자파의 산란)

  • 구연건
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.8 no.1
    • /
    • pp.17-22
    • /
    • 1983
  • Scattering of obliquely incident plane electromagnetic waves by an isotropic plasma coumn which is moving uniformly in the perpendicular direction to its axis is treated analytically on the basis of Lorentz transform and boundary conditions. The scattered field, the total scattering cross-section, the rader cross-section, and the angular distribution of the scattered power for the incident plane waves polarized arbitrarily are derived to find the function of the moving velocity of the plasma column and of the angle of the incident plane waves and to find the scattered field of the H-waves more distinguishable than the E-waves.

  • PDF

A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates

  • Bui, Tinh Quoc;Nguyen, Minh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.39 no.4
    • /
    • pp.579-598
    • /
    • 2011
  • The present work mainly reports a significant development of a novel efficient meshfree method for vibration and buckling analysis of orthotropic plates. The plate theory with orthotropic materials is followed the Kirchhoff''s assumption in which the only deflection is field variable and approximated by the moving Kriging interpolation approach, a new technique used for constructing the shape functions. The moving Kriging technique holds the Kronecker delta property, thus it makes the method efficiently in imposing the essential boundary conditions and no special techniques are required. Assessment of numerical results is to accurately illustrate the applicability and the effectiveness of the proposed method in the class of eigenvalue problems.