DOI QR코드

DOI QR Code

A novel meshfree model for buckling and vibration analysis of rectangular orthotropic plates

  • Received : 2010.11.18
  • Accepted : 2011.05.25
  • Published : 2011.08.25

Abstract

The present work mainly reports a significant development of a novel efficient meshfree method for vibration and buckling analysis of orthotropic plates. The plate theory with orthotropic materials is followed the Kirchhoff''s assumption in which the only deflection is field variable and approximated by the moving Kriging interpolation approach, a new technique used for constructing the shape functions. The moving Kriging technique holds the Kronecker delta property, thus it makes the method efficiently in imposing the essential boundary conditions and no special techniques are required. Assessment of numerical results is to accurately illustrate the applicability and the effectiveness of the proposed method in the class of eigenvalue problems.

Keywords

References

  1. Allman, D.J. (1975), "Calculation of the elastic buckling loads of thin flat reinforced plates using triangular finite elements", Int. J. Numer. Meth. Eng., 9, 415-432. https://doi.org/10.1002/nme.1620090210
  2. Ahmadian, M.T. and Sherafati Zangened, M. (2002), "Vibration analysis of orthotropic rectangular plates using superelements", Comput. Meth. Appl. Mech. Eng., 191, 2069-2075.
  3. Atluri, S.N. and Zhu, T. (1998), "A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics", Comput. Mech., 22, 117-127. https://doi.org/10.1007/s004660050346
  4. Bank, C.L. and Yin, J. (1996), "Buckling of orthotropic plates with free and rotationally restrained unloaded edges", Thin Wall. Struct., 24, 83-96. https://doi.org/10.1016/0263-8231(95)00036-4
  5. Batra, R.C., Qian, L.F. and Chen, L.M. (2004), "Natural frequencies of thick square plates made of orthotropic, trigonal, monoclinic and triclinic materials", J. Sound Vib., 270, 1074-1086. https://doi.org/10.1016/S0022-460X(03)00625-4
  6. Belytschko, T., Lu, Y.Y. and Gu, L. (1994), "Element free Galerkin method", Int. J. Numer. Meth. Eng., 37, 229- 256. https://doi.org/10.1002/nme.1620370205
  7. Belyschko, T., Organ, D. and Krongauz, Y. (1995), "A coupled finite element-element frer Galerkin method", Comput. Mech., 17, 186-195. https://doi.org/10.1007/BF00364080
  8. Biancolini, M.E., Brutti, C. and Reccia, L. (2005), "Approximate solution for free vibrations of thin orthotropic rectangular plates", J. Sound Vib., 288, 321-344. https://doi.org/10.1016/j.jsv.2005.01.005
  9. Bui, Q.T., Nguyen, N.T. and Nguyen-Dang, H. (2009), "A moving Kriging interpolation-based meshless method for numerical simulation of Kirchhoff plate problems", Int. J. Numer. Meth. Eng., 77, 1371-1395. https://doi.org/10.1002/nme.2462
  10. Bui, Q.T., Nguyen, N.M. and Zhang, Ch. (2010), "A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis", Comput. Meth. Appl. Mech. Eng. 200, 1354-1366.
  11. Bui, Q.T., Nguyen, N.M., Zhang, Ch. and Pham, D.A.K. (2011), "An efficient meshfree method for analysis of two-dimensional piezoelectric structures", Smart Mater. Struct., 20, 065016. https://doi.org/10.1088/0964-1726/20/6/065016
  12. Chen, J.S., Wu, C.T., Yoon, S. and You, Y. (2001), "A stabilized conforming nodal integration for Galerkin mesh-free methods", Int. J. Numer. Meth. Eng., 50, 435-466. https://doi.org/10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
  13. Chen, X.L., Liu, G.R. and Lim, S.P. (2003), "An element free Galerkin method for the free vibration analysis of composite laminates of complicated shape", Compos. Struct., 59, 279-289. https://doi.org/10.1016/S0263-8223(02)00034-X
  14. Chen, Y.Z. (1998), "Evaluation of fundamental vibration frequency of an orthotropic bending plate by using an iterative approach", Comput. Meth. Appl. Mech. Eng., 161, 289-296. https://doi.org/10.1016/S0045-7825(97)00321-6
  15. Cui, X.Y., Liu, R.G. and Li, G. (2009), "A smoothed Hermite radial point interpolation method for thin plate analysis", Arch. Appl. Mech., 81(1), 1-18.
  16. Cui, X.Y., Liu, G.R., Li, G.Y. and Zhang, G.Y. (2011), "A thin plate formulation without rotation DOFs based on the radial point interpolation method and triangular cells", Int. J. Numer. Meth. Eng., 85(8), 958-986. https://doi.org/10.1002/nme.3000
  17. Ferreira, A.J.M. and Batra, R.C. (2005), "Natural frequencies of orthotropic, monoclinic and hexagonal plates by a meshless method", J. Sound Vib., 285, 734-742. https://doi.org/10.1016/j.jsv.2004.10.025
  18. Ferreura, A.J.M., Fasshauer, G.E. and Batra, R.C. (2009), "Natural frequencies of thick plates made of orthotropic, monoclinic and hexagonal plates by a meshless method", J. Sound Vib., 319, 984-992. https://doi.org/10.1016/j.jsv.2008.06.034
  19. Fleming, M., Chu, Y.A., Moran, B. and Belyschko, T. (1997), "Enriched element-free Galerkin methods for crack tip fields", Int. J. Numer. Meth. Eng., 40, 1483-1504. https://doi.org/10.1002/(SICI)1097-0207(19970430)40:8<1483::AID-NME123>3.0.CO;2-6
  20. Gu, L. (2003), "Moving Kriging interpolation and element free Galerkin method", Int. J. Numer. Meth. Eng., 56, 1-11. https://doi.org/10.1002/nme.553
  21. James, O. (2010), "Comparing finite element and meshfree particle formulations for projectile penetration into fiber reinforced concrete", Comput. Concrete, 7(1), 103-110. https://doi.org/10.12989/cac.2010.7.2.103
  22. Jones, M.R. (2006), Buckling of Bars, Plates, and Shells, Bull Ridge Publishing, Blacksburg, Virginia, USA.
  23. Krysl, P. and Belytschko, T. (1996), "Analysis of thin plate by the element free Galerkin method", Comput. Mech., 17, 26-35.
  24. Leissa, W.A. (1977), "Recent research in plate vibrations: complicating effects", Shock Vib., 9, 21-35.
  25. Leissa, W.A. (1981), "Plate vibration research 1976-1981: complicating effects", Shock Vib., 13, 19-36.
  26. Leissa, W.A. (1987), "Recent research in plate vibrations. 1981-1985-Part II: complicating effects", Shock Vib., 19, 10-24.
  27. Li, S. and Liu, W.K. (2004), Meshfree Particle Method, Springer Berlin-Heidelberg, New York.
  28. Liew, K.M. and Chen, X.L. (2004), "Mesh-free radial point interpolation method for the buckling analysis of Mindlin plates subjected to in-plane point loads", Int. J. Numer. Meth. Eng., 60, 1861-1877. https://doi.org/10.1002/nme.1027
  29. Liew, K.M., Zhao, X. and Ferreira, A.J.M. (2011), "A review of meshfree methods for laminated and functionally graded plates and shells", Compos. Struct., 93, 2031-2041. https://doi.org/10.1016/j.compstruct.2011.02.018
  30. Liew, K.M., Xiang, Y. and Kitipornchai, S. (1995), "Research on thick plate vibration-A literature survey", J. Sound Vib., 180, 163-176. https://doi.org/10.1006/jsvi.1995.0072
  31. Liu, W.K., Jun, S. and Zhang, Y.F. (1996), "Reproducing kernel particle method", Int. J. Numer. Meth. Fluids, 20, 1081-1106.
  32. Liu, G.R. and Gu, Y.T. (2001), "A point interpolation method for two-dimensional solids", Int. J. Numer. Meth. Eng., 50, 937-951. https://doi.org/10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
  33. Liu, G.R. (2003), Meshfree Methods, Moving Beyond the Finite Element Method, CRC Press, USA.
  34. Liu, G.R. and Chen, X.L. (2001), "A mesh-free method for static and free vibration analyses of thin plates of complicated shape", J. Sound Vib., 241, 839-855. https://doi.org/10.1006/jsvi.2000.3330
  35. Liu, Y., Hon, Y.X. and Liew, K.M. (2006), "A meshfree Hermite-type radial point interpolation method for Kirchhoff plate problems", Int. J. Numer. Meth. Eng., 66, 1153-1178. https://doi.org/10.1002/nme.1587
  36. Lok, T.S. and Cheng, Q.H. (2001), "Free and forced vibration of simply supported, orthotropic sandwich panel", Comput. Struct., 79, 301-312. https://doi.org/10.1016/S0045-7949(00)00136-X
  37. Matsubara, H. and Yagawa, G. (2009), "Convergence studies for enriched free mesh method and its application to fracture mechanics", Interact. Multi. Mech., 2, 277-293. https://doi.org/10.12989/imm.2009.2.3.277
  38. Sadeghirad, A., Mohammadi, S. and Kani, I.M. (2010), "Meshless equilibrium on line method (MELM) for linear elasticity", Struct. Eng. Mech., 35(4), 511-533. https://doi.org/10.12989/sem.2010.35.4.511
  39. Sayakoummane, V. and Kanok-Nukulchai, W. (2007), "A meshless analysis of shells based on moving Kriging interpolation", Int. J. Comput. Meth., 4, 543-565. https://doi.org/10.1142/S0219876207000935
  40. Singh, A., Singh, I.V. and Prakash, R. (2007), "Meshless element free Galerkin method for unsteady nonlinear heat transfer problems", Int. J. Heat Mass Trans., 50, 1212-1219. https://doi.org/10.1016/j.ijheatmasstransfer.2006.08.039
  41. Tongsuk, P. and Kanok-Nukulchai, W. (2004), "Further investigation of element free Galerkin method using moving Kriging interpolation", Int. J. Comput. Meth., 1, 345-365. https://doi.org/10.1142/S0219876204000162
  42. Wang, D. and Wu, Y. (2008), "An efficient Galerkin meshfree analysis of shear deformable cylindrical panels", Interac. Multisc. Mech., 1, 339-355. https://doi.org/10.12989/imm.2008.1.3.339
  43. Wang, S. (1997), "A unified Timoshenko beam B-spline Rayleigh-Ritz method for vibration and buckling analysis of think and thin beams and plates", Int. J. Numer. Meth. Eng., 40, 473-491. https://doi.org/10.1002/(SICI)1097-0207(19970215)40:3<473::AID-NME75>3.0.CO;2-U
  44. Wanji, C. and Cheung, Y.K. (1998), "Refined triangular discrete Kirchhoff plate element for thin plate bending, vibration and buckling analysis", Int. J. Numer. Meth. Eng., 41, 1507-1525. https://doi.org/10.1002/(SICI)1097-0207(19980430)41:8<1507::AID-NME351>3.0.CO;2-T
  45. Vinson, R.J. (2005), Plate and Panel Structures of Isotropic, Composite and Piezoelectric Materials, Including Sandwich Construction, Springer, USA.
  46. Zienkiewicz, O.C. and Taylor, R.L. (1989), The Finite Element Method, McGraw-Hill, New York.

Cited by

  1. A simple analytical model for free vibration of orthotropic and functionally graded rectangular plates 2017, https://doi.org/10.1016/j.aej.2017.02.005
  2. A Hermite reproducing kernel Galerkin meshfree approach for buckling analysis of thin plates vol.51, pp.6, 2013, https://doi.org/10.1007/s00466-012-0784-9
  3. A Wave Based approach for the dynamic bending analysis of Kirchhoff plates under distributed deterministic and random excitation vol.156, 2015, https://doi.org/10.1016/j.compstruc.2015.04.007
  4. Numerical simulation of functionally graded cracked plates using NURBS based XIGA under different loads and boundary conditions vol.126, 2015, https://doi.org/10.1016/j.compstruct.2015.02.066
  5. A meshfree model without shear-locking for free vibration analysis of first-order shear deformable plates vol.33, pp.12, 2011, https://doi.org/10.1016/j.engstruct.2011.07.001
  6. A meshless-based local reanalysis method for structural analysis vol.192, 2017, https://doi.org/10.1016/j.compstruc.2017.07.011
  7. Numerical simulations of cracked plate using XIGA under different loads and boundary conditions vol.23, pp.6, 2016, https://doi.org/10.1080/15376494.2015.1029159
  8. ISOGEOMETRIC SIMULATION FOR BUCKLING, FREE AND FORCED VIBRATION OF ORTHOTROPIC PLATES vol.05, pp.02, 2013, https://doi.org/10.1142/S1758825113500178
  9. Free vibration of symmetrically laminated quasi-isotropic super-elliptical thin plates vol.29, pp.4, 2011, https://doi.org/10.12989/scs.2018.29.4.493
  10. A novel hyperbolic shear deformation theory for the mechanical buckling analysis of advanced composite plates resting on elastic foundations vol.30, pp.1, 2011, https://doi.org/10.12989/scs.2019.30.1.013
  11. Accurate buckling analysis of rectangular thin plates by double finite sine integral transform method vol.72, pp.4, 2011, https://doi.org/10.12989/sem.2019.72.4.491
  12. A method for natural frequency calculation of the functionally graded rectangular plate with general elastic restraints vol.10, pp.8, 2011, https://doi.org/10.1063/5.0013625