Purpose - High quality films are affected by both the production stage and various variables such as the size of the movie investment and marketing that changes consumers' perceptions. Consumer preferences should be recognized first to ensure that the movie is successful. If a film is produced without pre-investigation and analysis of consumer demand and taste, the probability of success will be low. This study investigates the balance of production costs, marketing costs, and profits using game theory, suggesting an optimization strategy using the simplex method of linear programming. Research design, data, and methodology - Before the release of the movie, initial demand is assumed to be driven largely by marketing costs. In the next phase, demand is assumed to be driven purely by a movie's production cost and quality, which might also further determine consumer demand. Thus, it is essential to determine how to distribute pure production costs and other costs (marketing) in a limited movie production budget. Moreover, it should be taken into account how to optimally distribute under the assumption that the audience and production company's input resources are limited. This research simplifies the assumptions for large-scale and relatively small-scale movie investments and examines how movie distribution participant profits differ when each cost is invested differently. Results - When first movers or market leaders have to choose both quality and marketing, it has been proven that pursuing a strategy choosing only one is more likely than choosing both. In this situation, market leaders should maximize marketing costs under the premise that market leaders will not lag their quality behind the quality of second movers. Additionally, focusing on movie marketing that produces a quick effect while ceding creative activity to increase movie quality is a natural outcome in the movie distribution environment since a cooperative strategy between market competitors is not feasible. Conclusions - Government film development policy should ignore quality competition between movie production companies and focus on preventing marketing competition. If movie production companies focus on movie production quality improvement then a creative competition would ensue.
Purpose - The movie market has the characteristics of being a perfectly competitive market as well as a pure monopolistic market at the same time. This is because there are competitors in the industry but prices, although not fixed, have not changed a lot. Price competition may not have spread, but the competition is focused on artistic value, and the degree of box office success is most important. The artistic value is determined in the course of the production process. However, the degree of box office success is dependent upon the marketing manager. The marketing strategy represents the difference in the standard or quality of the movie. Inherently, the marketing manager adopts the entertainment strategy based on the quality of the foundation of the completed movie. At this time, the marketing manager knows the pertinent information (high quality/low quality) regarding the movie. This research study tries to reveal what should be the reasonable movie marketing expense, dependent on the quality of the movie. Research design, data, and methodology - Using a game scenario with different market players, the goal of the research analysis is to find out the following. First, the marketing expense is determined to maximize the profits after film production. Second, after the production costs are already committed, the manufacturer gets to choose the marketing level. At this time, there will be a profit maximization point, considering the competition. The premise of the research is as follows: if it is a good movie of quality, positive word of mouth increasing the audience continuously slows down the speed of the demand curve. If the movie quality is bad, the negative word of mouth decreasing the audience gradually hastens the speed of the demand curve. On the marketing side, when the manufacturer invests heavily in the marketing expense of the movie, consumer expectations increase to drive up the audience numbers. On the other hand, it is difficult to improve the profits excessively. When the manufacturer invests in marketing a little bit, the marketing expense is only relatively committed, therefore a lot of demand cannot be gained. Results - If a fixed market share is in a competitive situation, a low quality manufacturer expends relatively more marketing expense. If the situation assumes two manufacturers spend the same for the cost of production, the high quality manufacturer takes more profit. If the manufacturer expends less marketing budget to save costs, the optimum profit cannot be achieved since the other party (opponent) grabs the initial market share. Conclusions - In conclusion, investment is essential for market share to increase. We must refrain from a zero-sum game and have models where the game participants pursue the creative profits together. In the current film industry, there is the dominating logic of winner and loser but we have to create a film industry environment where the participants can be altogether satisfied and live together.
영화의 흥행 요소를 파악하여 영화의 흥행 여부를 예측하는 것은 영화의 수익성 부분에서 아주 중요하다. 영화 시장이 과거와는 다르게 증가함에 따라, 다양한 영화 흥행에 관한 예측 연구들이 개발되었다. 본 논문에서는 영화 흥행 요소들을 수집하고 다중회귀 분석을 통해서 유의수준을 만족하는 흥행 요소들을 선택한다. 그 후, 이러한 요소들을 예측 방법들의 입력값으로 사용하여 영화 흥행을 예측한다. 성능을 비교하기 위해 본 논문에서 제안한 방법과 현재 개발된 영화 흥행 예측 방법(다중회귀, 의사결정트리, 인공신경망)들을 정확도와 평균제곱근오차를 통해 예측 모형의 성능을 비교한다. 그 결과, 다중 회귀 분석을 통해 유의한 흥행요소들만을 고려한 예측 방법의 정확도가 모든 흥행 요소들을 고려한 예측 방법보다 평균 8.2% 향상되었고, 현재까지 개발된 영화 흥행 예측 방법보다 더 높은 예측 성능을 보여준다.
The purpose of this study is to consider the expression of costume through the review of cinema costumes and to provide the model of cooperation between fashion and movie industry by analysis of collaboration with fashion brands in the movie . The subjects are the 1974 film directed by Jack Clayton and the 2013 version by Baz Luhrmann. Cinema Fashion was studied by analyzing the costumes of the two main characters, Gatsby and Daisy, in each scene. Gatsby's costume appeared as a model of traditional American classic suit, sensitive G-G look that symbolizes social success and traditional casual style that reflects upper-class life style. Daisy's costume expressed pastel toned luxury flapper look, oriental art deco style, and prestigious jewelry representing high class. The collaborations with fashion brands were carried out with Ralph Lauren and Cartier in 1974 film, and Brooks Brothers, Prada, and Tiffany in 2013. The value of prestige brands that matched the images of the movie was utilized, but marketing strategies for the promotion of fashion goods were not enough in 1974 version. On the other hand, in 2013 film, the effects of collaboration of the movie and fashion brands were forecasted sufficiently and marketing campaigns for promotion were performed in a various ways. The characteristics of collaborations were as follows: (1) the usage of prestige brands value, (2) collections planning and promotion using the stories of a movie, (3) the usage of multidirectional digital media, and (4) multi-dimensional promotion using entertainment factors. In collaborations with the movie, fashion brands could make cooperative relationship to produce the positive effects for promotion and prestige image strategies and draw attention of the people to the movie and fashion.
본 논문에서는 영화의 흥행을 예측하기 위한 방법을 제안한다. 최근 영화시장이 성장함에 따라 시장의 수요를 예측하기 위한 다양한 연구들이 수행되고 있다. 영화는 비교적 수명주기가 짧은 문화상품이다. 따라서 안정적인 수익을 창출하기 위해 개봉 전 마케팅비용 및 개봉 후 스크린 수 등에 대한 설계가 필요하다. 이를 위해서는 상품의 수요와 경제적인 수익규모에 대한 계산이 선행되어야 한다. 기존 관련 연구들의 경우 예측을 위한 변수로서 주로 영화 자체의 속성들이나 시장에서의 경쟁요인 등을 이용한다. 그러나 정작 상품을 구매하는 주체인 잠재관객들에 대한 비중은 비교적 미비하다. 따라서 본 논문에서는 사람들이 가진 영화에 대한 인지도를 고려하기 위해 트위터를 하나의 설문표본으로서 활용했다. 기존에 사용된 변수들과 트위터에서 추출한 정보를 오프라인 요소와 온라인 요소로 정의하고, 두 요소를 취합하여 기계학습을 적용했다. 실험을 통해 본 논문에서 제시하는 예측기법을 검증했으며, 실험결과 약 95%의 정확도로 영화의 흥행을 예측했다.
International journal of advanced smart convergence
/
제10권4호
/
pp.72-83
/
2021
The use of the predictive analytics (PA) powered by the artificial intelligence (AI) is more important in the movie sector during the COVID-19 pandemic, because Hollywood witnessed the impact of the 'Netflix Effect' and began to invest in data and AI. Our purpose is to discover a few cases of the AI centered PA in the movie industry value chain based on five objectives of PA: Compete, grow, enforce, improve, and satisfy. Even if movie companies' interest is to predict future success for competing with over-the-tops (OTTs) at a first glance, it is observed, once they start to use the PA with the AI, they try to utilize the enhanced PA platforms for remaining four objectives. As a result, ScriptBook, Vault, Pilot, Cinelytic and Merlin Video (Merlin) are use cases for the objective 'compete.' Movio of Vista Group International and Datorama of Salesforce are use cases for the objective 'grow.' Industrial Light & Magic (ILM) and Geena Davis Institute on Gender in Media (GDI) with Disney are use cases for the objective 'enforce.' Watson, Benjamin, and Greenlight Essential are use cases for the objective 'improve.' Disney Research (DR) with Simon Fraser University and California Institute of Technology is the use case for the objective 'satisfy.'
디지털 콘텐츠 산업은 전반적으로 이미 원 소스 멀티 유즈 시대에 접어들고 있다. 원작 소설 성공으로 영화로 재탄생되는가하면, 영화의 성공을 통하여 원작인 소설이 다시금 주목받는 경우가 생겨나며, 소설과 영화가 동시에 공개되는 경우도 있다. 본 논문은 게르만신화 서사구조를 갖고 있는 판타지 영화를 조셉 캠밸(J. Campbell)의 영웅서사구조 12단계 분류를 적용하여 소설의 서사구조를 시각화한 영화장면을 비교 분석하였다. 소설의 서사구조를 각색, 시각화 하는 경우 원작의 분위기, 스케일, 내용을 관객이 이해할 수 있는 충분한 시각적인 설명이 필요하며 적합한 이펙트를 사용했을 때 관객의 감정이입을 유도할 수 있다. 원작을 각색하여 시각화 하는 경우 원작 스케일과 작가의 메시지를 시각화하는 과정에 있어서 기초자료로 활용될 수 있을 것이며 사전에 관객 호응도를 단계별로 검토하여 시각적 기법(특수효과, 장면전환)에 적용할 수 있을 것이다.
영화 시장에서 흥행을 기록하는데 어떤 요인들이 영향을 미치는지에 대한 연구는 관련 산업의 리스크를 줄이고 영화 산업을 발전시키는데 매우 중요하다. 본 연구에서는 영화흥행에 영향이 있는 독립변수들의 상관의 정도를 찾아내기 위해서 먼저 AHP 기법을 이용한 영화전문가들에 대한 설문조사를 실시하여 측정요인별 중요도를 평가하였다. 또한, 스마트폰 보급과 사용의 증가로 검색 포털 및 SNS 관련 빅데이터에서 도출된 요인이 영화흥행에 영향을 미칠 것이라는 가설을 설정하였다. 그리고 앞에서 언급한 전문가 서베이 정보와 빅데이터를 모두 반영한 예측모형을 제안하였다. 제안한 모형의 예측의 정확도를 알아보기 위해 실 데이터를 가지고 검증한 결과 기존모형보다 향상됨(10.5%)을 확인하였다. 따라서 제안한 모형은 영화제작사 및 배급사들의 의사 결정에 도움이 될 것이라 판단된다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.4090-4102
/
2018
After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.
The success of movie 'Avatar' make people be interested in 3D stereoscopic movie, and government and 3D industry acknowledge that it is another opportunity to develop 3D market since 1920s. However, despite much interest little research to evaluate the effect of 3D stereoscopic exists. The present research aimed to disclose 3D effect compared to 2D by assumption of the importance of 3D stereoscopic and little evaluation to that as well. When audience are exposed to 3D stereoscopic, many outcomes are supposed to be differentiated from when to 2D. From this hypothesis, this paper examined mood, attitude, and presence as dependent variables. Using polarized stereoscopic projection display, 30 participants watched 2D and another 30 watched 3D stereoscopic movie which were the same content. On conclusion, the two groups were not significantly different and this involved much insight.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.