Online platforms often provide rating information to customers to relieve the uncertainty they encounter when purchasing experience goods. Prior research has focused mostly on the roles of rating volume and the valence of an average rating among the various possibilities. However, less frequently investigated is the effect of rating dispersion, which may be associated with uncertainty regarding how well a product fits a customer's personal preference, on new trials of experience goods. In this study, we examine the effect of rating dispersion on new trials of experience goods and identify the conditions which intensify or reduce the effect. Empirical analyses of movie box office sales data and online rating data reveal three interesting findings. First, movie sales decrease as movie ratings become increasingly dispersed. Second, the negative effect of rating dispersion on movie sales is more pronounced with more rating volume. Third, this negative effect weakens when additional information about a movie is available (i.e., higher average rating, greater star power, and time since its release). We discuss the academic and practical implications of our findings.
본 논문에서는 합성곱 신경망 기반의 영화 평점 예측 구조를 제안한다. 제안하는 구조는 문장 분류을 위하 고안된 TextCNN를 세 가지 측면에서 확장하였다. 첫 번째로 문자 임베딩을 이용하여 단어의 다양한 변형들을 처리할 수 있다. 두 번째로 주목 메커니즘을 적용하여 중요한 특징을 더욱 부각하였다. 세 번째로 활성 함수의 출력을 1-10 사이의 평점으로 만드는 점수 함수를 제안하였다. 제안하는 영화 평점 예측 구조를 평가하기 위해서 영화 리뷰 데이터를 이용하여 평가해 본 결과 기존의 방법을 사용했을 때보다 더욱 낮은 MSE를 확인하였다. 이는 제안하는 영화 평점 예측 구조의 우수성을 보여 주었다.
본 연구에서는 영화 관람 후 높은 평점을 매긴 집단과 낮은 평점을 매긴 집단 중 어느 집단이 영화에 대해 더 많은 이야기를 하는지, 즉 온라인 리뷰를 길게 작성하는지에 대해 알아보고자 하였다. 이를 위해 네이버 영화 API에서 제공하는 영화 평점과 리뷰 데이터를 수집하였고, 한국영화진흥위원회에서 제공하는 영화 손익분기점 데이터를 이용하여 영화를 흥행성공, 흥행부진, 흥행실패로 구분하여 영화 평점과 리뷰길이 간의 상관관계, 영화 개봉 전과 후, 흥행여부에 따른 리뷰길이의 특성, 마지막으로 영화 평점이 리뷰길이에 영향을 미치는가에 대한 회귀분석을 실시하여 제시하였다.
Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.
영화 산업의 빠른 발전으로 영화의 제작 수가 급격하게 증가하고 있으며, 영화 추천 시스템은 관객들의 과거 행동이나 영화 후기에 기반하여 관객들의 선호도를 예측하여 영화의 선택에 도움을 주고 있다. 본 논문은 평점의 평균과 편향의 보정을 이용하여 잠재요인 모델에 기반한 영화 추천 시스템을 제안한다. 특이값 분해 방법이 평점 매트릭스 분해에 사용되고, 통계 경사 하강법이 최소자승 손실 함수의 파라미터 최적합에 사용된다. 그리고 평균 제곱근 오차를 사용하여 제안한 시스템 성능을 평가한다. Surprise 패키지를 이용하여 제안한 시스템을 구현 하였으며, 모의실험 결과는 평균 제곱근 오차가 0.671이며, 다른 논문에서 방법에 비하여 좋은 성능을 가진다는 것을 확인하였다.
지능형 추천 시스템은 사용자의 요청에 응답하는 수동적인 시스템이 아닌 사용자가 원하는 서비스를 제안하는 시스템으로서 최근 콘텐츠 서비스 분야에 많이 개발되고 있다. 이러한 지능형 추천 시스템은 콘텐츠 개인화 서비스에 응용되고 있으며 대표적인 추천기법으로 내용기반과 협업적 필터링 기법이 있다. 본 연구에서는 협업적 필터링 및 퍼지 시스템을 이용하여 추천 시스템의 기반 기술인 예측 시스템을 제안하였다. 제안한 예측 시스템은 사용자의 과거 영화평가 정보를 바탕으로 영화에 대한 평가점수를 예측한다. 영화평가 예측시스템의 성능은 영화 평가점수의 실제값과 예측값의 오차를 RMSE(root mean square error) 방법으로 계산한 후 기존의 영화평가 시스템 RMSE 값과 비교하여 평가하였다. 본 연구를 통해 제안한 영화평가 예측시스템이 추천 시스템의 기반 기술로서 활용이 가능하고 다른 멀티미디어 컨텐츠 서비스 추천에도 응용이 가능할 것으로 기대한다.
영화 리뷰 사이트에서 영화 평점은 네티즌들의 주관적 판단으로 결정된다. 이로 인해 그들이 남긴 영화평과 평점 사이의 극성이 서로 불일치하는 경우가 종종 발생한다. 본 논문에서는 이 문제를 해결하기 위해 영화의 평가에 영향을 미치는 감성 문장들의 집합을 만들고, 이들을 영화평에 적용하여 평점을 추론한다. 감성 문장들의 집합을 만들기 위한 과정은 감성 어휘 사전을 구축하는 단계와 감성 문장을 구성하는 단계로 이루어진다. 감성 어휘 사전은 영화평에서 쓰인 형용사와 형용사의 극성을 저장한다. 감성 문장은 영화와 관련된 명사를 주어로 갖고 감성 어휘 사전의 어휘를 서술어로 갖는 문장 구조이다. 감성 문장의 극성과 감성 문장에서 쓰인 서술어의 극성이 다른 문장들은 제거하여 감성 문장들이 감성 어휘 사전 어휘의 극성과 일치되도록 하였다. 영화평에서 쓰인 감성 문장들의 평균 점수를 구하면 영화평이 갖는 감성 점수가 된다. 본 연구 결과를 통해 네티즌들이 매긴 평점에 비해 감성 문장 집합을 적용하여 계산한 영화평의 감성 점수가 영화평에 대한 의견을 더 잘 반영한다는 것을 알 수 있다.
The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.
본 논문에서는 협업 필터링의 선호도 예측 정확성의 저하를 초래하는 전통적 문제점 중 하나인 데이터 희소성 문제에 강인한 잠재적 속성 선호도 기반 협업 필터링 방법(Latent Attribute Rating-based Collaborative Filtering, LAR_CF)을 제안한다. 기존의 협업 필터링은 객체의 유사성을 판단하기 위한 특징벡터로써 사용자가 명시적으로 평가한 선호도만을 이용하며, 해당 문제 개선을 위해 속성을 사용하는 연구들은 범용적으로 사용하기 어려웠다. 이웃 기반 필터링에 근본을 두는 LAR_CF는 기존의 명시적 선호도와 함께 유사도 평가의 대상이 되는 두 객체의 고유한 속성을 특징벡터로 삼기 때문에 명시적 선호도의 수가 적어서 발생하는 데이터 희소성 문제를 개선하여 선호도 예측 정확도를 향상시키며, 속성의 종류에 구애받지 않고 손쉽게 적용할 수 있는 장점을 가진다. LAR_CF의 유효성 평가를 위해서 MovieLens 100k 데이터세트 및 해당 데이터세트에 사용된 속성정보를 활용하여 일반적 성능 실험과 인공적 데이터 희소성 실험에서 선호도 예측 정확도를 평가한 결과, 제안하는 방법이 데이터 희소 조건에서 선호도 예측 정확도를 향상시킬 수 있음을 확인하였다.
도서 취향을 고려하여 도서를 추천해주는 도서 추천 시스템은 사용자의 독서 경험과 독서에 대한 인식 개선에 효과적이다. 축적된 사용자 평점 기록이 상대적으로 적은 도서의 경우 추천 정확도에 한계가 나타난다. 본 연구에서는 상대적으로 풍부한 사용자 평점 데이터를 가진 영화 평점 정보를 이용하여 사용자에게 맞춤형 도서를 추천하는 추천 시스템을 제안한다. 제안하는 방법을 통해 도서 추천의 정확도를 높이고 보다 다양한 종류의 추천을 수행하는데 효과적임을 보였다. 영화 평점 데이터를 활용한 도서추천 시스템은 도서 분야 외 타 미디어 플랫폼의 데이터를 도서추천에 활용하는 의미 있는 시도가 될 것으로 예상한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.