• Title/Summary/Keyword: Movie Network

Search Result 124, Processing Time 0.028 seconds

분산 VoD 시스템을 위한 프리젠테이션 플래닝 (Presentation Planning for Distributed VoD Systems)

  • 황인준;변광준
    • 한국정보처리학회논문지
    • /
    • 제7권2S호
    • /
    • pp.577-593
    • /
    • 2000
  • A distributed video-on-demand (VoD) system is one where collection of video data is located at dispersed sites across a computer network. In a single site environment, a local video server retrieves video data from its local storage device. However, in the setting of a distributed VoD system, when a customer requests a movie from the local server, the server may need to interact with other servers located across the network. In this paper, we present three types of presentation plans that a local server must construct in order to satisfy the customer request. Informally speaking, a presentation plan is a temporally synchronized detailed sequence of steps that the local server must perform for presenting the requested movie to the customer. This involves obtaining commitments from other video servers, obtaining commitments from the network service provider, as well as making commitments of local resources, within the limitations of available bandwidth, available buffer, and customer data consumption rates. Furthermore, for evaluating the goodness of a presentation plan, we introduce two measures of optimality for presentation plans: minimizing wait time for a customer, and minimizing access bandwidth is used. We develop algorithms to compute optimal presentation plans for all three types, and carry out extensive experiments to compare their performance. We have also mathematically proved certain results for the presentation plans that had previously been verified experimentally in the literature.

  • PDF

온라인 매체와 댓글에 따른 영화 구전의도 및 관람의도에 관한 연구 (A Study on the eWOM and Selecting Movie According to Online Media and Replies)

  • 여등승;임규건
    • 한국IT서비스학회지
    • /
    • 제14권2호
    • /
    • pp.177-193
    • /
    • 2015
  • A great number of customers, who want to watch movies usually check out online reviews before choosing what to watch a movie. The most representative online media that customers consult are portal sites and SNS (Social Network Service). Although there have been numerous studies on online eWOM (e-Word of Mouth) and the effects of online media in businesses, it remains a question that which media is best for WOM (Word of Mouth) when selecting movies. This research examines customer's intention for consulting eWOM and for watching movies according to the number and tendency of online replies. We have compared portal sites and SNS about information of movie. The study shows that a large number of positive replies can affect the intention for WOM and choosing movies. Facebook has more influence than portal sites when choosing what to watch when replies consist of large and positive comments. However, there is no difference between the two types of media when they consist of negative comments.

Movie Recommendation System Based on Users' Personal Information and Movies Rated Using the Method of k-Clique and Normalized Discounted Cumulative Gain

  • Vilakone, Phonexay;Xinchang, Khamphaphone;Park, Doo-Soon
    • Journal of Information Processing Systems
    • /
    • 제16권2호
    • /
    • pp.494-507
    • /
    • 2020
  • This study proposed the movie recommendation system based on the user's personal information and movies rated using the method of k-clique and normalized discounted cumulative gain. The main idea is to solve the problem of cold-start and to increase the accuracy in the recommendation system further instead of using the basic technique that is commonly based on the behavior information of the users or based on the best-selling product. The personal information of the users and their relationship in the social network will divide into the various community with the help of the k-clique method. Later, the ranking measure method that is widely used in the searching engine will be used to check the top ranking movie and then recommend it to the new users. We strongly believe that this idea will prove to be significant and meaningful in predicting demand for new users. Ultimately, the result of the experiment in this paper serves as a guarantee that the proposed method offers substantial finding in raw data sets by increasing accuracy to 87.28% compared to the three most successful methods used in this experiment, and that it can solve the problem of cold-start.

대형 복합 상업건축의 앵커 테넌트 계획이 통행량에 미치는 영향에 관한 연구 - 롯데월드몰 앵커 테넌트 개장 전·후 통행량 변화를 중심으로 - (A Study on the Impact of Commercial Complex Anchor Tenant Plan in the Pedestrian Traffic - Focused on the Change of the Pedestrian Traffic by Reopening Anchor tenant of Lotte World Mall -)

  • 윤태준;이도훈;박현수
    • 한국실내디자인학회논문집
    • /
    • 제24권5호
    • /
    • pp.128-135
    • /
    • 2015
  • The purpose of this study is to propose a planning method for increasing visitors' usage attraction by understanding user circulation in the large scale commercial complex. Focusing on the impact of anchor tenant on the pedestrian traffic arousing visitors' usage attraction flow, this study analyzed pedestrian circulation and traffic volume of Lotte World Mall, a large scale commercial complex. In this study, the change of pedestrian traffic in the commercial complex was investigated and the circulation flow of anchor tenant visitors such as movie theater in the commercial complex was simulated by computer. By analyzing both characteristics of pedestrian circulation and traffic volume in large scale commercial complex and movie theater users' pedestrian traffic with network-based computer simulation, positive relationship between pedestrian traffic to movie theater and pedestrian traffic dispersion of the whole commercial complex users was emerged. In addition, It is necessary to plan of distributing pedestrian traffic of vertical moving line in central space appropriately for using attraction function of anchor tenant.

기존 영화 추천시스템의 문헌 고찰을 통한 유용한 확장 방안 (A Prospective Extension Through an Analysis of the Existing Movie Recommendation Systems and Their Challenges)

  • ;;;이경현
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제12권1호
    • /
    • pp.25-40
    • /
    • 2023
  • 추천 시스템은 지능적인 자동 결정을 생성하기 위해 사용자가 자주 사용한다. 영화 추천 시스템의 연구에서, 기존 접근 방식은 협업 및 콘텐츠 기반 필터링 기술을 사용한다. 협업 필터링은 사용자 유사성을 고려하는 반면, 콘텐츠 기반 필터링은 단일 사용자의 활동에 중점을 두고 있다. 또한 협업 필터링과 콘텐츠 기반 필터링을 결합한 혼합 필터링 접근법은 서로의 한계를 보완하기 위해 사용되고 있다. 최근엔 더 나은 추천 서비스를 제공하기 위해 사용자 간의 유사성을 찾는데 몇 가지 AI 기반 유사성 기법을 사용하고 있다. 본 논문은 기존의 다양한 영화 추천 시스템과 문제점 분석을 통해 가능한 해결책을 도출하여 유용한 확장 방안을 제공하는 것을 목표로 한다.

영화 리뷰 감성분석을 위한 텍스트 마이닝 기반 감성 분류기 구축 (A Study on Analyzing Sentiments on Movie Reviews by Multi-Level Sentiment Classifier)

  • 김유영;송민
    • 지능정보연구
    • /
    • 제22권3호
    • /
    • pp.71-89
    • /
    • 2016
  • 누구나 본인이 사용한 제품이나, 이용한 서비스에 대한 후기를 자유롭게 인터넷에 작성할 수 있고, 이러한 데이터의 양은 점점 더 많아지고 있다. 감성분석은 사용자가 생성한 온라인 텍스트 속에 내포된 감성 및 감정을 식별하기 위해 사용된다. 본 연구는 다양한 데이터 도메인 중 영화 리뷰를 분석 대상으로 한다. 영화 리뷰를 이용한 기존 연구에서는 종종 리뷰 평점을 관객의 감성으로 동일시하여 감성분석에 이용한다. 그러나 리뷰 내용과 평점의 실제적 극성 정도가 항상 일치하는 것은 아니기 때문에 연구의 정확성에 한계가 발생할 수 있다. 이에 본 연구에서는 기계학습 기반의 감성 분류기를 구축하고, 이를 통해 리뷰의 감성점수를 산출하여 리뷰에서 나타나는 감성의 수치화를 목표로 한다. 나아가 산출된 감성점수를 이용하여 리뷰와 영화 흥행 간의 연관성을 살펴보았다. 감성분석 모델은 지지벡터 분류기와 신경망을 이용해 구축되었고, 총 1만 건의 영화 리뷰를 학습용 데이터로 하였다. 감성분석은 총 175편의 영화에 대한 1,258,538개의 리뷰에 적용하였다. 리뷰의 평점과 흥행, 그리고 감성점수와 흥행과의 연관성은 상관분석을 통해 살펴보았고, t-검정으로 두 지표의 평균차를 비교하여 감성점수의 활용성을 검증하였다. 연구 결과, 본 연구에서 제시하는 모델 구축 방법은 나이브 베이즈 분류기로 구축한 모델보다 높은 정확성을 보였다. 상관분석 결과로는, 영화의 주간 평균 평점과 관객 수 간의 유의미한 양의 상관관계가 나타났고, 감성점수와 관객 수 간의 상관분석에서도 유사한 결과가 도출되었다. 이에 두 지표간의 평균을 이용한 t-검정을 수행하고, 이를 바탕으로 산출한 감성점수를 리뷰 평점의 역할을 할 수 있는 지표로써 활용 가능함을 검증하였다. 나아가 검증된 결론을 근거로, 트위터에서 영화를 언급한 트윗을 수집하여 감성분석을 적용한 결과를 살펴봄으로써 감성분석 모델의 활용 방안을 모색하였다. 전체적 실험 및 검증의 과정을 통해 본 연구는 감성분석 연구에 있어 개선된 감성 분류 방법을 제시할 수 있음을 보였고, 이러한 점에서 연구의 의의가 있다.

인공지능 기반형 빅데이터 정보시스템에 관한 연구 -영화제작자와 천만 영화 사례분석 중심으로- (A Study on Big Data Information System based on Artificial Intelligence -Filmmaker and Focusing on Movie case analysis of 10 million Viewers-)

  • 이상윤;윤홍주
    • 한국전자통신학회논문지
    • /
    • 제14권2호
    • /
    • pp.377-388
    • /
    • 2019
  • 본고에서 제안된 시스템은 제4차 산업혁명의 인공지능 시대에 맞춰 작동하는 빅데이터 시스템으로 제안되었다. 제안된 시스템은 정부의 새로운 지능형 빅데이터 정보시스템 개발 측면에서 하나의 좋은 예가 될 수 있다. 예를 들면 기존 영화관입장권통합전산망의 연계 혹은 그 기능 그대로 부처의 시스템으로 도입될 수도 있다. 제안된 시스템은 이를 위해 유저의 프로파일을 영화제작자 등의 사업자에게 전송하는데 여기에는 비교데이터로서 제공된다. 곧 유저별 특성데이터로 정보가 전송되며 이른바 '새로운 재해석'내용까지 포함한 실제 유저가 느끼는 영화품평을 통해 제작자는 개봉된 영화의 작품성, 흥행성, 손익분기점의 3가지 요소의 성공가능성을 실시간으로 가늠할 수 있다.

Gated Recurrent Unit Architecture for Context-Aware Recommendations with improved Similarity Measures

  • Kala, K.U.;Nandhini, M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.538-561
    • /
    • 2020
  • Recommender Systems (RecSys) have a major role in e-commerce for recommending products, which they may like for every user and thus improve their business aspects. Although many types of RecSyss are there in the research field, the state of the art RecSys has focused on finding the user similarity based on sequence (e.g. purchase history, movie-watching history) analyzing and prediction techniques like Recurrent Neural Network in Deep learning. That is RecSys has considered as a sequence prediction problem. However, evaluation of similarities among the customers is challenging while considering temporal aspects, context and multi-component ratings of the item-records in the customer sequences. For addressing this issue, we are proposing a Deep Learning based model which learns customer similarity directly from the sequence to sequence similarity as well as item to item similarity by considering all features of the item, contexts, and rating components using Dynamic Temporal Warping(DTW) distance measure for dynamic temporal matching and 2D-GRU (Two Dimensional-Gated Recurrent Unit) architecture. This will overcome the limitation of non-linearity in the time dimension while measuring the similarity, and the find patterns more accurately and speedily from temporal and spatial contexts. Experiment on the real world movie data set LDOS-CoMoDa demonstrates the efficacy and promising utility of the proposed personalized RecSys architecture.

트위터를 활용한 감성 기반의 영화 유사도 측정 (Measuring Similarity Between Movies Based on Sentiment of Tweets)

  • 김경민;김동윤;이지형
    • 한국지능시스템학회논문지
    • /
    • 제24권3호
    • /
    • pp.292-297
    • /
    • 2014
  • 최근 소셜 네트워크 서비스가 보편화되면서, 이를 활용하여 사람들의 의견이나 감성 등을 파악하기 위한 감성분석 연구가 다양한 분야 진행되고 있다. 기존의 영화 관련 연구의 경우, 대부분이 영화평에 대해 단순 긍/부정으로 감성분석을 하여, 영화에 대한 선호도를 파악하는 데 그쳤다. 사람의 감성은 단순 긍/부정이 아닌 다양한 감성으로 분류될 수 있는데 반해, 이분법적 감성분석은 영화의 평점 정보에서 손쉽게 얻을 수 있는 선호도와 유사한 분석을 하는데 그친다. 따라서 영화의 평점보다 다양하고 유용한 정보를 얻기 위해서는, 영화 리뷰를 세분화된 감성으로 분석하여 영화에 대해 느낀 감성을 다양한 기준으로 분류할 필요가 있다. 본 논문에서는 Thayer 모델을 기반으로 감성 분류 기준을 세우고, 수집한 영화 관련 트윗을 이용하여 각 영화에 대해 대중이 느끼는 감성을 분석한다. 분석된 영화에 대한 감성 비율을 유클리드거리, 코사인유사도, 피어슨 상관계수를 이용하여 영화간의 유사도를 측정하였다. IMDB에서 제공하는 유사 영화 정보를 바탕으로 본 논문에서 제안하는 방식의 유용성을 검증하였다.

다중회귀 분석을 이용한 영화 흥행 예측 (Predicting Financial Success of a Movie Using Multiple Regression Analysis)

  • 정회윤;양형정
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2013년도 제48차 하계학술발표논문집 21권2호
    • /
    • pp.275-278
    • /
    • 2013
  • 영화의 흥행 요소를 파악하여 영화의 흥행 여부를 예측하는 것은 영화의 수익성 부분에서 아주 중요하다. 영화 시장이 과거와는 다르게 증가함에 따라, 다양한 영화 흥행에 관한 예측 연구들이 개발되었다. 본 논문에서는 영화 흥행 요소들을 수집하고 다중회귀 분석을 통해서 유의수준을 만족하는 흥행 요소들을 선택한다. 그 후, 이러한 요소들을 예측 방법들의 입력값으로 사용하여 영화 흥행을 예측한다. 성능을 비교하기 위해 본 논문에서 제안한 방법과 현재 개발된 영화 흥행 예측 방법(다중회귀, 의사결정트리, 인공신경망)들을 정확도와 평균제곱근오차를 통해 예측 모형의 성능을 비교한다. 그 결과, 다중 회귀 분석을 통해 유의한 흥행요소들만을 고려한 예측 방법의 정확도가 모든 흥행 요소들을 고려한 예측 방법보다 평균 8.2% 향상되었고, 현재까지 개발된 영화 흥행 예측 방법보다 더 높은 예측 성능을 보여준다.

  • PDF