• Title/Summary/Keyword: Movie Network

Search Result 124, Processing Time 0.025 seconds

Movie Popularity Classification Based on Support Vector Machine Combined with Social Network Analysis

  • Dorjmaa, Tserendulam;Shin, Taeksoo
    • Journal of Information Technology Services
    • /
    • v.16 no.3
    • /
    • pp.167-183
    • /
    • 2017
  • The rapid growth of information technology and mobile service platforms, i.e., internet, google, and facebook, etc. has led the abundance of data. Due to this environment, the world is now facing a revolution in the process that data is searched, collected, stored, and shared. Abundance of data gives us several opportunities to knowledge discovery and data mining techniques. In recent years, data mining methods as a solution to discovery and extraction of available knowledge in database has been more popular in e-commerce service fields such as, in particular, movie recommendation. However, most of the classification approaches for predicting the movie popularity have used only several types of information of the movie such as actor, director, rating score, language and countries etc. In this study, we propose a classification-based support vector machine (SVM) model for predicting the movie popularity based on movie's genre data and social network data. Social network analysis (SNA) is used for improving the classification accuracy. This study builds the movies' network (one mode network) based on initial data which is a two mode network as user-to-movie network. For the proposed method we computed degree centrality, betweenness centrality, closeness centrality, and eigenvector centrality as centrality measures in movie's network. Those four centrality values and movies' genre data were used to classify the movie popularity in this study. The logistic regression, neural network, $na{\ddot{i}}ve$ Bayes classifier, and decision tree as benchmarking models for movie popularity classification were also used for comparison with the performance of our proposed model. To assess the classifier's performance accuracy this study used MovieLens data as an open database. Our empirical results indicate that our proposed model with movie's genre and centrality data has by approximately 0% higher accuracy than other classification models with only movie's genre data. The implications of our results show that our proposed model can be used for improving movie popularity classification accuracy.

Modeling of Convolutional Neural Network-based Recommendation System

  • Kim, Tae-Yeun
    • Journal of Integrative Natural Science
    • /
    • v.14 no.4
    • /
    • pp.183-188
    • /
    • 2021
  • Collaborative filtering is one of the commonly used methods in the web recommendation system. Numerous researches on the collaborative filtering proposed the numbers of measures for enhancing the accuracy. This study suggests the movie recommendation system applied with Word2Vec and ensemble convolutional neural networks. First, user sentences and movie sentences are made from the user, movie, and rating information. Then, the user sentences and movie sentences are input into Word2Vec to figure out the user vector and movie vector. The user vector is input on the user convolutional model while the movie vector is input on the movie convolutional model. These user and movie convolutional models are connected to the fully-connected neural network model. Ultimately, the output layer of the fully-connected neural network model outputs the forecasts for user, movie, and rating. The test result showed that the system proposed in this study showed higher accuracy than the conventional cooperative filtering system and Word2Vec and deep neural network-based system suggested in the similar researches. The Word2Vec and deep neural network-based recommendation system is expected to help in enhancing the satisfaction while considering about the characteristics of users.

Visualization of movie recommendation system using the sentimental vocabulary distribution map

  • Ha, Hyoji;Han, Hyunwoo;Mun, Seongmin;Bae, Sungyun;Lee, Jihye;Lee, Kyungwon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.5
    • /
    • pp.19-29
    • /
    • 2016
  • This paper suggests a method to refine a massive collective intelligence data, and visualize with multilevel sentiment network, in order to understand information in an intuitive and semantic way. For this study, we first calculated a frequency of sentiment words from each movie review. Second, we designed a Heatmap visualization to effectively discover the main emotions on each online movie review. Third, we formed a Sentiment-Movie Network combining the MDS Map and Social Network in order to fix the movie network topology, while creating a network graph to enable the clustering of similar nodes. Finally, we evaluated our progress to verify if it is actually helpful to improve user cognition for multilevel analysis experience compared to the existing network system, thus concluded that our method provides improved user experience in terms of cognition, being appropriate as an alternative method for semantic understanding.

Analysis of Spectator Mobilizing Power for 2000's Korea Movies Based on Construction of Network (네트워크 기반 2000년대 한국영화의 관객 동원력 분석)

  • Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.1
    • /
    • pp.429-437
    • /
    • 2011
  • Movie network as a social network shows power-law distribution that is one of distinct properties in scale-free network. We constructed movie network from 799 Korea movies that screened from 2000 to 2009 and analyzed structural properties of the network. The 799 movies was classified three groups as a spectator mobilizing power. One million spectators mobilizing power movie was denoted the first class. The best 10 movie directors who produced at least three movies for ten years and had 70% the first class movie of them were selected. We also preferred the best 20 movie actors who played at least five movies for ten years and had 70% the first class movie of them. We re-constructed core movie network that composed the best 10 directors, the best 20 movie stars, and 157 movies that were produced by the directors or were played by the movie stars. We predict a possible combination of the director and movie actor as a category of the movie that has highly spectator mobilizing power. Here, we provide insight and method for producing high spectators mobilizing power movies

Sentiment Analysis on Movie Reviews Using Word Embedding and CNN (워드 임베딩과 CNN을 사용하여 영화 리뷰에 대한 감성 분석)

  • Ju, Myeonggil;Youn, Seongwook
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.15 no.1
    • /
    • pp.87-97
    • /
    • 2019
  • Reaction of people is importantly considered about specific case as a social network service grows. In the previous research on analysis of social network service, they predicted tendency of interesting topic by giving scores to sentences written by user. Based on previous study we proceeded research of sentiment analysis for social network service's sentences, which predict the result as positive or negative for movie reviews. In this study, we used movie review to get high accuracy. We classify the movie review into positive or negative based on the score for learning. Also, we performed embedding and morpheme analysis on movie review. We could predict learning result as positive or negative with a number 0 and 1 by applying the model based on learning result to social network service. Experimental result show accuracy of about 80% in predicting sentence as positive or negative.

A Visualization of Movie Review based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seul-gi;Kim, Jang Hyun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.197-200
    • /
    • 2018
  • The aim of current research is to suggest a interface for movie reviews at a glance through semantic network analysis. The implication of this study is to systematically investigate the structure of eWoM. Specifically, by visualizing semantic networks of movie reviews this study attempts to provide a prototype of a possible review system that can check the response of movie viewer at a glance.

  • PDF

Relationship between Genre Centrality and Performance in the Motion Picture Industry (네트워크 중심성과 성과에 관한 연구: 영화산업을 중심으로)

  • Lee, Wonhee;Jung, Dong-Il
    • The Journal of the Korea Contents Association
    • /
    • v.17 no.6
    • /
    • pp.153-168
    • /
    • 2017
  • Existing researches on movie genre have been focusing on the relationship between a specific genre and performance of a movie. However, most of films cross into multiple genres and new approach is needed for analyzing a genre network. In this study social network analysis was used to analyze the genre centrality and its relationship with movie performance by developing a genre network, i.e. network among multiple genres constructed via genre co-occurrence pattern in a specific movie. Three index of genre centrality, eigenvector centrality, degree centrality, and bonacich power centrality, were tested for the valued genre network. Results showed that the relationship between genre centrality and movie performance appeared to be inverted U-shaped. This empirical finding is in line with the theory of ambidexterity which emphasizes the balance of exploration and exploitation. In addition, this study can provide practical implications for movie producers, distributors, and theaters that need to develop genre strategies.

Analysis of Extension Pattern for Network of Movie Stars from Korea Movies 100 (한국영화 100선에 등장하는 영화배우 네트워크 확장 패턴 분석)

  • Ryu, Jea-Woon;Kim, Hak-Yong
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.7
    • /
    • pp.420-428
    • /
    • 2010
  • The advancement of the Science for complex systems enables the analysis of many social networks. We constructed and analyzed a Korean movie star network as one of social networks, based on the 100 Korean movie selection for a main data source. Until now, the research trend has been the structural analysis of network, focused on link numbers, such as degree, betweenness and clustering coefficient. But it is time that the research is not limited by the structural analysis of networks only. Rather, the research goal should be aimed to an information analysis, performed by identifying and analyzing central modules that are regarded as the core of complex networks, using k-core analysis method. In this research, we constructed a network of movie stars who have appeared in 100 Korean movie selection, provided by Korean movie database, also we analyzed its core modules with and without weights, and the trend of seasonal expansion of the network. We expect our findings can be used as the basic data applicable to a model for understanding of the expansion and evolution of networks.

SHD Digital Cinema Distribution over a Fast Long-Distance Network

  • Takahiro Yamaguchi;Daisuke Shirai;Mitsuru Nomura;Kazuhiro Shirakawa;Tatsuya Fujii;Tetsuro Fujii;Kim, io-Oguchi
    • Journal of Broadcast Engineering
    • /
    • v.9 no.2
    • /
    • pp.119-130
    • /
    • 2004
  • We have developed a prototype super-high-definition (SHD) digital cinema distribution system that can store, transmit, and display eight-million-pixel motion pictures that have the image quality of a 35-mm film movie. The system contains a movie server, a real-time decoder, and an SHB projector. Using a Gigabit Ethernet link and TCP/IP, the server transmits JPEG2000 compressed motion picture data streams to the decoder at transmission speeds as high as 300 Mbps. The received data streams are decompressed by the decoder, and then projected onto a screen via the projector. By using an enlarged TCP window, multiple TCP streams, and a shaping function to control the data transmission quantity, we achieved real-time streaming of SHD movie data at about 300 Mbps between Chicago and Los Angeles, a distance of more than 3000 km. We also improved the decoder performance to show movies with Image qualities of 450 Mbps or higher. Since UDP is more suitable than TCP for fast long-distance streaming, we have developed an SHD digital cinema UDP relay system, in which UDP is used for transmission over a fast long-distance network. By using four pairs of server-side-proxy and decoder-side-proxy, 450-Mbps movie data streams could be transmitted.

A Visualization of Movie Reviews based on a Semantic Network Analysis (의미연결망 분석을 활용한 영화 리뷰 시각화)

  • Kim, Seulgi;Kim, Jang Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2019
  • This study visualized users reaction about movies based on keywords with high frequency. For this work, we collected data of movie reviews on . A total of six movies were selected, and we conducted the work of data gathering and preprocessing. Semantic network analysis was used to understand the relationship among keywords. Also, NetDraw, packaged with UCINET, was used for data visualization. In this study, we identified the differences in characteristics of review contents regarding each movie. The implication of this study is that we visualized movie reviews made by sentence as keywords and explored whether it is possible to construct the interface to check users' reaction at a glance. We suggest that further studies use more diverse movie reviews, and the number of reviews for each movie is used in similar quantities for research.